These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26602345)

  • 21. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California's Central Coast.
    Smith HA; Chaney WE; Bensen TA
    J Econ Entomol; 2008 Oct; 101(5):1526-32. PubMed ID: 18950033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-Temperature Fumigation of Harvested Lettuce Using a Phosphine Generator.
    Liu YB
    J Econ Entomol; 2018 May; 111(3):1171-1176. PubMed ID: 29506210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A survey of syrphid predators of Nasonovia ribisnigri in organic lettuce on the central coast of California.
    Smith HA; Chaney WE
    J Econ Entomol; 2007 Feb; 100(1):39-48. PubMed ID: 17370807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paecilomyces Rot: A New Apple Disease.
    Biango-Daniels MN; Hodge KT
    Plant Dis; 2018 Aug; 102(8):1581-1587. PubMed ID: 30673420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Susceptibility of
    Prince G; Chandler D
    Insects; 2020 Jan; 11(1):. PubMed ID: 31963410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii).
    Houbraken J; Varga J; Rico-Munoz E; Johnson S; Samson RA
    Appl Environ Microbiol; 2008 Mar; 74(5):1613-9. PubMed ID: 18192427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergy between chemical and biological control in the IPM of currant-lettuce aphid (Nasonovia ribisnigri) in Canterbury, New Zealand.
    Fagan LL; McLachlan A; Till CM; Walker MK
    Bull Entomol Res; 2010 Apr; 100(2):217-23. PubMed ID: 19573253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the inactivation of Aspergillus fischeri and Paecilomyces niveus ascospores in apple juice by different ultraviolet light irradiances.
    Menezes NMC; Longhi DA; Ortiz BO; Junior AF; de Aragão GMF
    Int J Food Microbiol; 2020 Nov; 333():108773. PubMed ID: 32739634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neozygites osornensis (Neozygitales: Neozygitaceae) Infecting Cinara sp. (Hemiptera: Aphididae) in Brazil.
    Montalva C; Luz C; Humber RA
    Neotrop Entomol; 2016 Apr; 45(2):227-30. PubMed ID: 26868651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Susceptibility of Rosaceous Pome and Stone Fruits to Postharvest Rot by
    Wang TW; Hodge KT
    Plant Dis; 2022 Jan; 106(1):121-126. PubMed ID: 34445878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory.
    Shapiro-Ilan DI; Cottrell TE; Jackson MA; Wood BW
    J Invertebr Pathol; 2008 Nov; 99(3):312-7. PubMed ID: 18675272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of vacuum and controlled atmosphere treatments on insect mortality and lettuce quality.
    Liu YB
    J Econ Entomol; 2003 Aug; 96(4):1100-7. PubMed ID: 14503580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts.
    Scorsetti AC; Jensen AB; López Lastra C; Humber RA
    Fungal Biol; 2012 Feb; 116(2):196-203. PubMed ID: 22289765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation, inoculation to insect host, and molecular phylogeny of an entomogenous fungus Paecilomyces tenuipes.
    Fukatsu T; Sato H; Kuriyama H
    J Invertebr Pathol; 1997 Nov; 70(3):203-8. PubMed ID: 9367727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.
    Kinyanjui G; Khamis FM; Mohamed S; Ombura LO; Warigia M; Ekesi S
    Bull Entomol Res; 2016 Feb; 106(1):63-72. PubMed ID: 26490301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.
    Jensen AB; Eilenberg J; López Lastra C
    FEMS Microbiol Lett; 2009 Nov; 300(2):180-7. PubMed ID: 19796134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular assessment of predation by hoverflies (Diptera: Syrphidae) in Mediterranean lettuce crops.
    Gomez-Polo P; Alomar O; Castañé C; Lundgren JG; Piñol J; Agustí N
    Pest Manag Sci; 2015 Sep; 71(9):1219-27. PubMed ID: 25236922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards new sources of resistance to the currant-lettuce aphid (
    Walley PG; Hough G; Moore JD; Carder J; Elliott M; Mead A; Jones J; Teakle G; Barker G; Buchanan-Wollaston V; Hand P; Pink D; Collier R
    Mol Breed; 2017; 37(1):4. PubMed ID: 28111522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of an Indonesian isolate of Paecilomyces reniformis.
    Kalkar O; Carner GR; Scharf D; Boucias DG
    Mycopathologia; 2006 Feb; 161(2):109-18. PubMed ID: 16463094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dibutyl succinate, produced by an insect-pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose.
    Lee YS; Han JH; Kang BR; Kim YC
    Pest Manag Sci; 2019 Mar; 75(3):852-858. PubMed ID: 30175880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.