BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 26603347)

  • 21. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches.
    Chu LY; Ye L; Dong K; Compans RW; Yang C; Prausnitz MR
    Pharm Res; 2016 Apr; 33(4):868-78. PubMed ID: 26620313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microneedles for vaccine delivery: challenges and future perspectives.
    Shin CI; Jeong SD; Rejinold NS; Kim YC
    Ther Deliv; 2017 Jun; 8(6):447-460. PubMed ID: 28530151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parameter optimization toward optimal microneedle-based dermal vaccination.
    van der Maaden K; Varypataki EM; Yu H; Romeijn S; Jiskoot W; Bouwstra J
    Eur J Pharm Sci; 2014 Nov; 64():18-25. PubMed ID: 25151530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting the skin for microneedle delivery of influenza vaccine.
    Koutsonanos DG; Compans RW; Skountzou I
    Adv Exp Med Biol; 2013; 785():121-32. PubMed ID: 23456844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Successful application of large microneedle patches by human volunteers.
    Ripolin A; Quinn J; Larrañeta E; Vicente-Perez EM; Barry J; Donnelly RF
    Int J Pharm; 2017 Apr; 521(1-2):92-101. PubMed ID: 28216463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin.
    Prausnitz MR
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():177-200. PubMed ID: 28375775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microneedle technology for potential SARS-CoV-2 vaccine delivery.
    McNamee M; Wong S; Guy O; Sharma S
    Expert Opin Drug Deliv; 2023 Jun; 20(6):799-814. PubMed ID: 37128730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delivery systems for intradermal vaccination.
    Kim YC; Jarrahian C; Zehrung D; Mitragotri S; Prausnitz MR
    Curr Top Microbiol Immunol; 2012; 351():77-112. PubMed ID: 21472533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation.
    Lutton RE; Moore J; Larrañeta E; Ligett S; Woolfson AD; Donnelly RF
    Drug Deliv Transl Res; 2015 Aug; 5(4):313-31. PubMed ID: 26022578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antigen-loaded dissolving microneedle array as a novel tool for percutaneous vaccination.
    Naito S; Ito Y; Kiyohara T; Kataoka M; Ochiai M; Takada K
    Vaccine; 2012 Feb; 30(6):1191-7. PubMed ID: 22172508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential effects of introducing microneedle patch vaccines into routine vaccine supply chains.
    Wedlock PT; Mitgang EA; Elsheikh F; Leonard J; Bakal J; Welling J; Crawford J; Assy E; Magadzire BP; Bechtel R; DePasse JV; Siegmund SS; Brown ST; Lee BY
    Vaccine; 2019 Jan; 37(4):645-651. PubMed ID: 30578088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acrylated adhesive proteinic microneedle patch for local drug delivery and stable device implantation.
    Yang JW; Lee J; Song KI; Park D; Cha HJ
    J Control Release; 2024 Jul; 371():193-203. PubMed ID: 38782066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Devices for intradermal vaccination.
    Kis EE; Winter G; Myschik J
    Vaccine; 2012 Jan; 30(3):523-38. PubMed ID: 22100637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microneedles: A New Generation Vaccine Delivery System.
    Menon I; Bagwe P; Gomes KB; Bajaj L; Gala R; Uddin MN; D'Souza MJ; Zughaier SM
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques.
    Perez Cuevas MB; Kodani M; Choi Y; Joyce J; O'Connor SM; Kamili S; Prausnitz MR
    Bioeng Transl Med; 2018 Sep; 3(3):186-196. PubMed ID: 30377659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opportunities and challenges in delivering influenza vaccine by microneedle patch.
    Jacoby E; Jarrahian C; Hull HF; Zehrung D
    Vaccine; 2015 Sep; 33(37):4699-704. PubMed ID: 25842218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a thermostable microneedle patch for influenza vaccination.
    Mistilis MJ; Bommarius AS; Prausnitz MR
    J Pharm Sci; 2015 Feb; 104(2):740-9. PubMed ID: 25448542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technology update: dissolvable microneedle patches for vaccine delivery.
    Rodgers AM; Cordeiro AS; Donnelly RF
    Med Devices (Auckl); 2019; 12():379-398. PubMed ID: 31572025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity.
    Rodgers AM; Cordeiro AS; Kissenpfennig A; Donnelly RF
    Expert Opin Drug Deliv; 2018 Sep; 15(9):851-867. PubMed ID: 30051726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization.
    Andrianov AK; DeCollibus DP; Gillis HA; Kha HH; Marin A; Prausnitz MR; Babiuk LA; Townsend H; Mutwiri G
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18936-41. PubMed ID: 19864632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.