BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26603555)

  • 1. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes.
    Fenkes M; Shiels HA; Fitzpatrick JL; Nudds RL
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Mar; 193():11-21. PubMed ID: 26603555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.
    Eliason EJ; Farrell AP
    J Fish Biol; 2016 Jan; 88(1):359-88. PubMed ID: 26577675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids.
    Farrell AP
    J Exp Biol; 2009 Dec; 212(Pt 23):3771-80. PubMed ID: 19915118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations.
    Farrell AP; Hinch SG; Cooke SJ; Patterson DA; Crossin GT; Lapointe M; Mathes MT
    Physiol Biochem Zool; 2008; 81(6):697-708. PubMed ID: 18922081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sperm in hot water: direct and indirect thermal challenges interact to impact on brown trout sperm quality.
    Fenkes M; Fitzpatrick JL; Ozolina K; Shiels HA; Nudds RL
    J Exp Biol; 2017 Jul; 220(Pt 14):2513-2520. PubMed ID: 28455440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation temperature changes spermatozoa flagella length relative to head size in brown trout.
    Fenkes M; Fitzpatrick JL; Shiels HA; Nudds RL
    Biol Open; 2019 Jul; 8(7):. PubMed ID: 31285268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced flow impacts salmonid smolt emigration in a river with low-head weirs.
    Gauld NR; Campbell RN; Lucas MC
    Sci Total Environ; 2013 Aug; 458-460():435-43. PubMed ID: 23685369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a hierarchical model framework to assess climate change and hydropower operation impacts on the habitat of an imperiled fish in the Jinsha River, China.
    Zhang P; Qiao Y; Schineider M; Chang J; Mutzner R; Fluixá-Sanmartín J; Yang Z; Fu R; Chen X; Cai L; Lu J
    Sci Total Environ; 2019 Jan; 646():1624-1638. PubMed ID: 30235646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum swimming pathways of fish spawning migrations in rivers.
    McElroy B; DeLonay A; Jacobson R
    Ecology; 2012 Jan; 93(1):29-34. PubMed ID: 22486084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolutionary ecology of alternative migratory tactics in salmonid fishes.
    Dodson JJ; Aubin-Horth N; Thériault V; Páez DJ
    Biol Rev Camb Philos Soc; 2013 Aug; 88(3):602-25. PubMed ID: 23347290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of a downscaled climate change simulation on the fish fauna in an Inner-Alpine River.
    Matulla C; Schmutz S; Melcher A; Gerersdorfer T; Haas P
    Int J Biometeorol; 2007 Dec; 52(2):127-37. PubMed ID: 17587065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.
    Moore JW; Yeakel JD; Peard D; Lough J; Beere M
    J Anim Ecol; 2014 Sep; 83(5):1035-46. PubMed ID: 24673479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the Influence of Streamflow on Migration and Spawning of a Threatened Diadromous Fish, the Australian Grayling Prototroctes Maraena.
    Koster WM; Crook DA; Dawson DR; Gaskill S; Morrongiello JR
    Environ Manage; 2018 Mar; 61(3):443-453. PubMed ID: 28374227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology.
    Alix M; Kjesbu OS; Anderson KC
    J Fish Biol; 2020 Sep; 97(3):607-632. PubMed ID: 32564350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life-history strategies in salmonids: the role of physiology and its consequences.
    Birnie-Gauvin K; Bordeleau X; Cooke SJ; Davidsen JG; Eldøy SH; Eliason EJ; Moore A; Aarestrup K
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):2304-2320. PubMed ID: 34043292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape factors modulating patterns of salmonid distribution during summer in north Patagonian rivers.
    Lallement ME; Rechencq M; Fernández MV; Zattara E; Sosnovsky A; Vigliano P; Garibotti G; Alonso MF; Lippolt G; Macchi PJ
    J Fish Biol; 2020 Sep; 97(3):753-762. PubMed ID: 32524613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.
    Segurado P; Branco P; Jauch E; Neves R; Ferreira MT
    Sci Total Environ; 2016 Aug; 562():435-445. PubMed ID: 27100019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change effects on hatching success and embryonic development of fish: Assessing multiple stressor responses in a large-scale mesocosm study.
    Wild R; Nagel C; Geist J
    Sci Total Environ; 2023 Oct; 893():164834. PubMed ID: 37327887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential interactions between diadromous fishes of U.K. conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments.
    Gill AB; Bartlett M; Thomsen F
    J Fish Biol; 2012 Jul; 81(2):664-95. PubMed ID: 22803729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.
    Hinch SG; Cooke SJ; Farrell AP; Miller KM; Lapointe M; Patterson DA
    J Fish Biol; 2012 Jul; 81(2):576-99. PubMed ID: 22803725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.