BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 26603628)

  • 1. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.
    Chen X; Wang J; Pacella JJ; Villanueva FS
    Ultrasound Med Biol; 2016 Feb; 42(2):528-538. PubMed ID: 26603628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy.
    Chen X; Chen X; Wang J; Yu FTH; Villanueva FS; Pacella JJ
    Ultrasound Med Biol; 2023 Apr; 49(4):996-1006. PubMed ID: 36697268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
    Zhao X; Wright A; Goertz DE
    Ultrason Sonochem; 2023 Feb; 93():106291. PubMed ID: 36640460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
    Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
    Pouliopoulos AN; Bonaccorsi S; Choi JJ
    Phys Med Biol; 2014 Nov; 59(22):6941-57. PubMed ID: 25350470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
    Helfield B; Black JJ; Qin B; Pacella J; Chen X; Villanueva FS
    Ultrasound Med Biol; 2016 Mar; 42(3):782-94. PubMed ID: 26674676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superharmonic microbubble Doppler effect in ultrasound therapy.
    Pouliopoulos AN; Choi JJ
    Phys Med Biol; 2016 Aug; 61(16):6154-71. PubMed ID: 27469394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro sonothrombolysis of human blood clots with BR38 microbubbles.
    Petit B; Gaud E; Colevret D; Arditi M; Yan F; Tranquart F; Allémann E
    Ultrasound Med Biol; 2012 Jul; 38(7):1222-33. PubMed ID: 22542261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.
    Stride EP; Coussios CC
    Proc Inst Mech Eng H; 2010; 224(2):171-91. PubMed ID: 20349814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening.
    Wang S; Samiotaki G; Olumolade O; Feshitan JA; Konofagou EE
    Ultrasound Med Biol; 2014 Jan; 40(1):130-7. PubMed ID: 24239362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity.
    McDannold N; Vykhodtseva N; Hynynen K
    Phys Med Biol; 2006 Feb; 51(4):793-807. PubMed ID: 16467579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining radiation force with cavitation for enhanced sonothrombolysis.
    Chuang YH; Cheng PW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound.
    Sassaroli E; Hynynen K
    Ultrasound Med Biol; 2007 Oct; 33(10):1651-60. PubMed ID: 17590501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.
    Wang S; Wang CY; Unnikrishnan S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2015 Nov; 50(11):772-84. PubMed ID: 26135018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.
    Shamout FE; Pouliopoulos AN; Lee P; Bonaccorsi S; Towhidi L; Krams R; Choi JJ
    Ultrasound Med Biol; 2015 Sep; 41(9):2435-48. PubMed ID: 26067786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptosis Induced by Microbubble-Assisted Acoustic Cavitation in K562 Cells: The Predominant Role of the Cyclosporin A-Dependent Mitochondrial Permeability Transition Pore.
    Zhao L; Feng Y; Shi A; Zong Y; Wan M
    Ultrasound Med Biol; 2015 Oct; 41(10):2755-64. PubMed ID: 26164288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis.
    Goel L; Wu H; Kim H; Zhang B; Kim J; Dayton PA; Xu Z; Jiang X
    Ultrasound Med Biol; 2020 Jul; 46(7):1698-1706. PubMed ID: 32389332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.