BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 26603896)

  • 41. Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB.
    Fritz G; Kaina B
    Mol Biol Cell; 2006 Feb; 17(2):851-61. PubMed ID: 16319174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments.
    Liao H; Ji F; Helleday T; Ying S
    EMBO Rep; 2018 Sep; 19(9):. PubMed ID: 30108055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1.
    Dhoonmoon A; Nicolae CM; Moldovan GL
    Nat Commun; 2022 Aug; 13(1):5063. PubMed ID: 36030235
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ewing Tumor-associated Antigen 1 Interacts with Replication Protein A to Promote Restart of Stalled Replication Forks.
    Feng S; Zhao Y; Xu Y; Ning S; Huo W; Hou M; Gao G; Ji J; Guo R; Xu D
    J Biol Chem; 2016 Oct; 291(42):21956-21962. PubMed ID: 27601467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metnase Mediates Loading of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication Forks.
    Kim HS; Williamson EA; Nickoloff JA; Hromas RA; Lee SH
    J Biol Chem; 2017 Jan; 292(4):1414-1425. PubMed ID: 27974460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner.
    Paniagua I; Tayeh Z; Falcone M; Hernández Pérez S; Cerutti A; Jacobs JJL
    Nat Commun; 2022 Sep; 13(1):5167. PubMed ID: 36075897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. More forks on the road to replication stress recovery.
    Allen C; Ashley AK; Hromas R; Nickoloff JA
    J Mol Cell Biol; 2011 Feb; 3(1):4-12. PubMed ID: 21278446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metnase promotes restart and repair of stalled and collapsed replication forks.
    De Haro LP; Wray J; Williamson EA; Durant ST; Corwin L; Gentry AC; Osheroff N; Lee SH; Hromas R; Nickoloff JA
    Nucleic Acids Res; 2010 Sep; 38(17):5681-91. PubMed ID: 20457750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The TIMELESS and PARP1 interaction suppresses replication-associated DNA gap accumulation.
    Saldanha J; Rageul J; Patel JA; Phi AL; Lo N; Park JJ; Kim H
    Nucleic Acids Res; 2024 Jun; 52(11):6424-6440. PubMed ID: 38801073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromatin remodeler ALC1 prevents replication-fork collapse by slowing fork progression.
    Ooka M; Abe T; Cho K; Koike K; Takeda S; Hirota K
    PLoS One; 2018; 13(2):e0192421. PubMed ID: 29408941
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity.
    Kottemann MC; Conti BA; Lach FP; Smogorzewska A
    Mol Cell; 2018 Jan; 69(1):24-35.e5. PubMed ID: 29290612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impediment of Replication Forks by Long Non-coding RNA Provokes Chromosomal Rearrangements by Error-Prone Restart.
    Watanabe T; Marotta M; Suzuki R; Diede SJ; Tapscott SJ; Niida A; Chen X; Mouakkad L; Kondratova A; Giuliano AE; Orsulic S; Tanaka H
    Cell Rep; 2017 Nov; 21(8):2223-2235. PubMed ID: 29166612
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks.
    Kim HS; Nickoloff JA; Wu Y; Williamson EA; Sidhu GS; Reinert BL; Jaiswal AS; Srinivasan G; Patel B; Kong K; Burma S; Lee SH; Hromas RA
    J Biol Chem; 2017 Feb; 292(7):2795-2804. PubMed ID: 28049724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-ray repair cross-complementing gene I protein plays an important role in camptothecin resistance.
    Park SY; Lam W; Cheng YC
    Cancer Res; 2002 Jan; 62(2):459-65. PubMed ID: 11809696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry.
    Hashimoto Y; Tanaka H
    J Biol Chem; 2021; 296():100033. PubMed ID: 33148697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Replisome assembly and the direct restart of stalled replication forks.
    Heller RC; Marians KJ
    Nat Rev Mol Cell Biol; 2006 Dec; 7(12):932-43. PubMed ID: 17139333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The mismatch recognition protein MutSα promotes nascent strand degradation at stalled replication forks.
    Zhang J; Zhao X; Liu L; Li HD; Gu L; Castrillon DH; Li GM
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2201738119. PubMed ID: 36161943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability.
    Xu S; Wu X; Wu L; Castillo A; Liu J; Atkinson E; Paul A; Su D; Schlacher K; Komatsu Y; You MJ; Wang B
    Genes Dev; 2017 Jul; 31(14):1469-1482. PubMed ID: 28860160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unrepaired base excision repair intermediates in template DNA strands trigger replication fork collapse and PARP inhibitor sensitivity.
    Serrano-Benitez A; Wells SE; Drummond-Clarke L; Russo LC; Thomas JC; Leal GA; Farrow M; Edgerton JM; Balasubramanian S; Yang M; Frezza C; Gautam A; Brazina J; Burdova K; Hoch NC; Jackson SP; Caldecott KW
    EMBO J; 2023 Sep; 42(18):e113190. PubMed ID: 37492888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.