These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26603940)

  • 1. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    Sci Rep; 2015 Nov; 5():17110. PubMed ID: 26603940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures.
    Tsai P; Lammertink RG; Wessling M; Lohse D
    Phys Rev Lett; 2010 Mar; 104(11):116102. PubMed ID: 20366488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction.
    Annavarapu RK; Kim S; Wang M; Hart AJ; Sojoudi H
    Sci Rep; 2019 Jan; 9(1):405. PubMed ID: 30674992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects.
    Chen X; Ma R; Li J; Hao C; Guo W; Luk BL; Li SC; Yao S; Wang Z
    Phys Rev Lett; 2012 Sep; 109(11):116101. PubMed ID: 23005650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporation-Induced Wetting Transition of Nanodroplets on Nanopatterned Surfaces with Concentric Rings: Surface Geometry and Wettability Effects.
    Gao S; Long J; Liu W; Liu Z
    Langmuir; 2019 Jul; 35(29):9546-9553. PubMed ID: 31298861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.
    Zhang Y; Ren W
    J Chem Phys; 2014 Dec; 141(24):244705. PubMed ID: 25554173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.
    Choi CH; Kim CJ
    Langmuir; 2009 Jul; 25(13):7561-7. PubMed ID: 19518098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ wetting state transition on micro- and nanostructured surfaces at high temperature.
    Wang J; Liu M; Ma R; Wang Q; Jiang L
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15198-208. PubMed ID: 25141234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binary mixture droplet wetting on micro-structure decorated surfaces.
    Al Balushi KM; Sefiane K; Orejon D
    J Colloid Interface Sci; 2022 Apr; 612():792-805. PubMed ID: 35065463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of wetting transition on evaporative fakir droplets by using slippery superhydrophobic surfaces with low depinning force.
    Shamim JA; Takahashi Y; Goswami A; Shaukat N; Hsu WL; Choi J; Daiguji H
    Sci Rep; 2023 Feb; 13(1):2368. PubMed ID: 36759577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the shedding of impaled droplets: The role of transient intervening layers.
    Stamatopoulos C; Schutzius TM; Köppl CJ; El Hayek N; Maitra T; Hemrle J; Poulikakos D
    Sci Rep; 2016 Jan; 6():18875. PubMed ID: 26743806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum energy paths of wetting transitions on grooved surfaces.
    Pashos G; Kokkoris G; Boudouvis AG
    Langmuir; 2015 Mar; 31(10):3059-68. PubMed ID: 25715270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.