These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26603943)

  • 1. Quantifying Modes of 3D Cell Migration.
    Driscoll MK; Danuser G
    Trends Cell Biol; 2015 Dec; 25(12):749-759. PubMed ID: 26603943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative 3D analysis of complex single border cell behaviors in coordinated collective cell migration.
    Cliffe A; Doupé DP; Sung H; Lim IK; Ong KH; Cheng L; Yu W
    Nat Commun; 2017 Apr; 8():14905. PubMed ID: 28374738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage podosomes go 3D.
    Van Goethem E; Guiet R; Balor S; Charrière GM; Poincloux R; Labrousse A; Maridonneau-Parini I; Le Cabec V
    Eur J Cell Biol; 2011; 90(2-3):224-36. PubMed ID: 20801545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures.
    Van Goethem E; Poincloux R; Gauffre F; Maridonneau-Parini I; Le Cabec V
    J Immunol; 2010 Jan; 184(2):1049-61. PubMed ID: 20018633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple mechanisms of 3D migration: the origins of plasticity.
    Petrie RJ; Yamada KM
    Curr Opin Cell Biol; 2016 Oct; 42():7-12. PubMed ID: 27082869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments.
    Cougoule C; Van Goethem E; Le Cabec V; Lafouresse F; Dupré L; Mehraj V; Mège JL; Lastrucci C; Maridonneau-Parini I
    Eur J Cell Biol; 2012; 91(11-12):938-49. PubMed ID: 22999511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-assisted reconstruction and motion analysis of the three-dimensional cell.
    Soll DR; Wessels D; Heid PJ; Voss E
    ScientificWorldJournal; 2003 Sep; 3():827-41. PubMed ID: 14532423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.
    Kappe CP; Schütz L; Gunther S; Hufnagel L; Lemke S; Leitte H
    IEEE Trans Vis Comput Graph; 2016 Jan; 22(1):995-1004. PubMed ID: 26529743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model.
    Wu PH; Giri A; Wirtz D
    Nat Protoc; 2015 Mar; 10(3):517-27. PubMed ID: 25719270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new technique for studying directional cell migration in a hydrogel-based three-dimensional matrix for tissue engineering model systems.
    Topman G; Shoham N; Sharabani-Yosef O; Lin FH; Gefen A
    Micron; 2013 Aug; 51():9-12. PubMed ID: 23896652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.
    Charwat V; Schütze K; Holnthoner W; Lavrentieva A; Gangnus R; Hofbauer P; Hoffmann C; Angres B; Kasper C
    J Biotechnol; 2015 Jul; 205():70-81. PubMed ID: 25687101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing chiral cell motility by 3D Riesz transform-differential interference contrast microscopy and computational kinematic analysis.
    Tamada A; Igarashi M
    Nat Commun; 2017 Dec; 8(1):2194. PubMed ID: 29259161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers.
    Notbohm J; Lesman A; Tirrell DA; Ravichandran G
    Integr Biol (Camb); 2015 Oct; 7(10):1186-95. PubMed ID: 26021600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic gel-strip model for the simulation of migrating cells.
    Sakamoto Y; Prudhomme S; Zaman MH
    Ann Biomed Eng; 2011 Nov; 39(11):2735-49. PubMed ID: 21800204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of 2D and 3D DIAS to motion analysis of live cells in transmission and confocal microscopy imaging.
    Wessels D; Kuhl S; Soll DR
    Methods Mol Biol; 2006; 346():261-79. PubMed ID: 16957296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts.
    Giuliani A; Frati C; Rossini A; Komlev VS; Lagrasta C; Savi M; Cavalli S; Gaetano C; Quaini F; Manescu A; Rustichelli F
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e168-78. PubMed ID: 21360687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell migration in 3D matrix.
    Even-Ram S; Yamada KM
    Curr Opin Cell Biol; 2005 Oct; 17(5):524-32. PubMed ID: 16112853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction to Homeostatic Migration.
    Coles MC
    Methods Mol Biol; 2017; 1591():1-8. PubMed ID: 28349471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cell migration and its regulation by Rho GTPases and p53 in a three-dimensional environment.
    Vinot S; Anguille C; de Toledo M; Gadea G; Roux P
    Methods Enzymol; 2008; 439():413-24. PubMed ID: 18374180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubules in 3D cell motility.
    Bouchet BP; Akhmanova A
    J Cell Sci; 2017 Jan; 130(1):39-50. PubMed ID: 28043967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.