These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26604095)

  • 1. Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot.
    Seepanomwan K; Caligiore D; Cangelosi A; Baldassarre G
    Neural Netw; 2015 Dec; 72():31-47. PubMed ID: 26604095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.
    Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO
    Front Neurorobot; 2017; 11():2. PubMed ID: 28179882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shared mechanisms underlie mental imagery and motor planning.
    Bennet R; Reiner M
    Sci Rep; 2022 Feb; 12(1):2947. PubMed ID: 35194088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ease of hand rotation during active exploration of views of a 3-D object modulates view generalization.
    Sasaoka T; Asakura N; Inui T
    Exp Brain Res; 2019 Apr; 237(4):939-951. PubMed ID: 30680422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grounding language in action and perception: from cognitive agents to humanoid robots.
    Cangelosi A
    Phys Life Rev; 2010 Jun; 7(2):139-51. PubMed ID: 20416855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal brain activity related to rotation method during a mental rotation task of three-dimensional objects: an MEG study.
    Kawamichi H; Kikuchi Y; Ueno S
    Neuroimage; 2007 Sep; 37(3):956-65. PubMed ID: 17613250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study.
    Bicho E; Erlhagen W; Louro L; e Silva EC
    Hum Mov Sci; 2011 Oct; 30(5):846-68. PubMed ID: 21208673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography.
    Kosslyn SM; DiGirolamo GJ; Thompson WL; Alpert NM
    Psychophysiology; 1998 Mar; 35(2):151-61. PubMed ID: 9529941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual object cognition precedes but also temporally overlaps mental rotation.
    Schendan HE; Lucia LC
    Brain Res; 2009 Oct; 1294():91-105. PubMed ID: 19631629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.
    Lamm C; Windischberger C; Moser E; Bauer H
    Neuroimage; 2007 Jul; 36(4):1374-86. PubMed ID: 17532647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging the gap between motor imagery and motor execution with a brain-robot interface.
    Bauer R; Fels M; Vukelić M; Ziemann U; Gharabaghi A
    Neuroimage; 2015 Mar; 108():319-27. PubMed ID: 25527239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the stages of the mental rotation of complex figures with the intracortical interaction mapping technique.
    Nikolaev AR
    Neurosci Behav Physiol; 1995; 25(3):228-33. PubMed ID: 7477823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of neural network to humanoid robots-development of co-associative memory model.
    Itoh K; Miwa H; Takanobu H; Takanishi A
    Neural Netw; 2005; 18(5-6):666-73. PubMed ID: 16109473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mental rotation strategies reflected in event-related (de)synchronization of α and μ power.
    ter Horst AC; van Lier R; Steenbergen B
    Psychophysiology; 2013 Sep; 50(9):858-63. PubMed ID: 23829384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.
    Anderson AJ; Bruni E; Lopopolo A; Poesio M; Baroni M
    Neuroimage; 2015 Oct; 120():309-22. PubMed ID: 26188260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.