These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26604198)

  • 1. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.
    Kumar N; Millot R; Battaglia-Brunet F; Omoregie E; Chaurand P; Borschneck D; Bastiaens L; Rose J
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5960-8. PubMed ID: 26604198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.
    Kumar N; Omoregie EO; Rose J; Masion A; Lloyd JR; Diels L; Bastiaens L
    Water Res; 2014 Mar; 51():64-72. PubMed ID: 24388832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe
    Zhong J; Yin W; Li Y; Li P; Wu J; Jiang G; Gu J; Liang H
    Water Res; 2017 Oct; 122():536-544. PubMed ID: 28628876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longevity of granular iron in groundwater treatment processes: corrosion product development.
    Kohn T; Livi KJ; Roberts AL; Vikesland PJ
    Environ Sci Technol; 2005 Apr; 39(8):2867-79. PubMed ID: 15884388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria.
    Gramp JP; Bigham JM; Jones FS; Tuovinen OH
    J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane.
    Zhong H; Brusseau ML; Wang Y; Yan N; Quig L; Johnson GR
    Water Res; 2015 Oct; 83():104-11. PubMed ID: 26141426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments.
    Lee S; O'Loughlin EJ; Kwon MJ
    J Environ Manage; 2021 Aug; 292():112756. PubMed ID: 33984641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions.
    Shrout JD; Larese-Casanova P; Scherer MM; Alvarez PJ
    Environ Technol; 2005 Oct; 26(10):1115-26. PubMed ID: 16342534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of sample preparation on mineralogical analysis of zero-valent iron reactive barrier materials.
    Phillips DH; Gu B; Watson DB; Roh Y
    J Environ Qual; 2003; 32(4):1299-305. PubMed ID: 12931885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier.
    Phillips DH; Watson DB; Roh Y; Gu B
    J Environ Qual; 2003; 32(6):2033-45. PubMed ID: 14674525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and transformation of mixed-valent nanoparticles generated by Fe(0) electrocoagulation.
    Dubrawski KL; van Genuchten CM; Delaire C; Amrose SE; Gadgil AJ; Mohseni M
    Environ Sci Technol; 2015 Feb; 49(4):2171-9. PubMed ID: 25608110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions.
    Van Nooten T; Lieben F; Dries J; Pirard E; Springael D; Bastiaens L
    Environ Sci Technol; 2007 Aug; 41(16):5724-30. PubMed ID: 17874779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.
    Lee TR; Wilkin RT
    J Contam Hydrol; 2010 Jul; 116(1-4):47-57. PubMed ID: 20554346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level arsenite removal from groundwater by zero-valent iron.
    Lien HL; Wilkin RT
    Chemosphere; 2005 Apr; 59(3):377-86. PubMed ID: 15763090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.
    Mak MS; Lo IM; Liu T
    Water Res; 2011 Dec; 45(19):6575-84. PubMed ID: 22018698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments.
    Guo Q; Blowes DW
    J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns.
    Wu Y; Slater L; Versteeg R; LaBrecque D
    J Contam Hydrol; 2008 Jan; 95(3-4):154-67. PubMed ID: 17996979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.