These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26604990)

  • 1. Multifunctional and Spatially Controlled Bioconjugation to Melt Coextruded Nanofibers.
    Kim SE; Wallat JD; Harker EC; Advincula AA; Pokorski JK
    Polym Chem; 2015 Aug; 6(31):5683-5692. PubMed ID: 26604990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Modification of Melt Extruded Poly(ε-caprolactone) Nanofibers: Toward a New Scalable Biomaterial Scaffold.
    Kim SE; Wang J; Jordan AM; Korley LT; Baer E; Pokorski JK
    ACS Macro Lett; 2014 Jun; 3(6):585-589. PubMed ID: 24977107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coextruded, aligned, and gradient-modified poly(ε-caprolactone) fibers as platforms for neural growth.
    Kim SE; Harker EC; De Leon AC; Advincula RC; Pokorski JK
    Biomacromolecules; 2015 Mar; 16(3):860-7. PubMed ID: 25715836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drawing in poly(ε-caprolactone) fibers: tuning mechanics, fiber dimensions and surface-modification density.
    Kim SE; Jordan AM; Korley LTJ; Pokorski JK
    J Mater Chem B; 2017 Jun; 5(23):4499-4506. PubMed ID: 32263976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanolayer coextrusion: An efficient and environmentally friendly micro/nanofiber fabrication technique.
    Cheng J; Li H; Cao Z; Wu D; Liu C; Pu H
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():292-301. PubMed ID: 30573253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologically Triggered Delivery of EGF from Polymer Fiber Patches.
    Kim SE; Lee PW; Pokorski JK
    ACS Macro Lett; 2017; 6(6):593-597. PubMed ID: 29250460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diels-Alder "Clickable" Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth.
    Kalaoglu-Altan OI; Kirac-Aydin A; Sumer Bolu B; Sanyal R; Sanyal A
    Bioconjug Chem; 2017 Sep; 28(9):2420-2428. PubMed ID: 28846385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional electrospun nanofibers for wound application - Novel insights into the control of drug release and antimicrobial activity.
    Wang J; Planz V; Vukosavljevic B; Windbergs M
    Eur J Pharm Biopharm; 2018 Aug; 129():175-183. PubMed ID: 29859280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Modified Melt Coextruded Nanofibers Enhance Blood Clotting In Vitro.
    Hochberg JD; Wirth DM; Pokorski JK
    Macromol Biosci; 2022 Dec; 22(12):e2200292. PubMed ID: 36122179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional aliphatic polyester nanofibers for tissue engineering.
    Zhan J; Singh A; Zhang Z; Huang L; Elisseeff JH
    Biomatter; 2012; 2(4):202-12. PubMed ID: 23507886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery.
    Bhattarai RS; Bachu RD; Boddu SHS; Bhaduri S
    Pharmaceutics; 2018 Dec; 11(1):. PubMed ID: 30586852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications.
    Abadi B; Goshtasbi N; Bolourian S; Tahsili J; Adeli-Sardou M; Forootanfar H
    Front Bioeng Biotechnol; 2022; 10():986975. PubMed ID: 36561047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.
    Kim SE; Zhang C; Advincula AA; Baer E; Pokorski JK
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8928-38. PubMed ID: 27043205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing.
    Li P; Ruan L; Jiang G; Sun Y; Wang R; Gao X; Yunusov KE; Aharodnikau UE; Solomevich SO
    Acta Biomater; 2022 Oct; 152():197-209. PubMed ID: 36084922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins.
    Tantipanjaporn A; Wong MK
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The study of the pseudo-polyrotaxane architecture as a route for mild surface functionalization by click chemistry of poly(ε-caprolactone)-based electrospun fibers.
    Oster M; Schlatter G; Gallet S; Baati R; Pollet E; Gaillard C; Avérous L; Fajolles C; Hébraud A
    J Mater Chem B; 2017 Mar; 5(11):2181-2189. PubMed ID: 32263691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pendant Functionalized Polyester Nanofibers with Dual Cargo Release.
    Nun N; Xu Y; Joy A
    ACS Appl Bio Mater; 2019 Nov; 2(11):4856-4863. PubMed ID: 35021485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis.
    Kim J; Li BX; Huang RY; Qiao JX; Ewing WR; MacMillan DWC
    J Am Chem Soc; 2020 Dec; 142(51):21260-21266. PubMed ID: 33290649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology.
    Du XY; Li Q; Wu G; Chen S
    Adv Mater; 2019 Dec; 31(52):e1903733. PubMed ID: 31573714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.