These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26605069)

  • 1. X-ray diffraction pattern from the flight muscle of Toxorhynchites towadensis reveals the specific phylogenic position of mosquito among Diptera.
    Iwamoto H
    Zoological Lett; 2015; 1():24. PubMed ID: 26605069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight muscle-specific Pro-Ala-rich extension of troponin is important for maintaining the insect-type myofilament lattice integrity.
    Iwamoto H
    J Struct Biol; 2013 Jul; 183(1):33-9. PubMed ID: 23707700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band.
    Squire JM; Roessle M; Knupp C
    J Mol Biol; 2004 Nov; 343(5):1345-63. PubMed ID: 15491617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns.
    Iwamoto H; Trombitás K; Yagi N; Suggs JA; Bernstein SI
    Front Physiol; 2014; 5():416. PubMed ID: 25400584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
    Iwamoto H
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction studies on oriented gels of vertebrate smooth muscle thin filaments.
    Popp D; Holmes KC
    J Mol Biol; 1992 Mar; 224(1):65-76. PubMed ID: 1532210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle.
    Poole KJ; Lorenz M; Evans G; Rosenbaum G; Pirani A; Craig R; Tobacman LS; Lehman W; Holmes KC
    J Struct Biol; 2006 Aug; 155(2):273-84. PubMed ID: 16793285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refined structure of bony fish muscle myosin filaments from low-angle X-ray diffraction data.
    Al-Khayat HA; Squire JM
    J Struct Biol; 2006 Aug; 155(2):218-29. PubMed ID: 16884926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Localization of minor proteins and structural changes in the myosin filaments of vertebrate striated muscle].
    Lednev VV; Srebnitskaia LK; Kornev AN; Khromov AS; Malinchik SB
    Biofizika; 1981; 26(4):739-48. PubMed ID: 6974572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression.
    Iwamoto H
    Zoological Lett; 2017; 3():15. PubMed ID: 28879039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation?
    Squire JM; Bekyarova T; Farman G; Gore D; Rajkumar G; Knupp C; Lucaveche C; Reedy MC; Reedy MK; Irving TC
    J Mol Biol; 2006 Sep; 361(5):823-38. PubMed ID: 16887144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural role of high molecular weight tropomyosins in dipteran indirect flight muscle and the effect of phosphorylation.
    Mateos J; Herranz R; Domingo A; Sparrow J; Marco R
    J Muscle Res Cell Motil; 2006; 27(3-4):189-201. PubMed ID: 16752200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling muscle motor conformations using low-angle X-ray diffraction.
    Squire JM; Al-Khayat HA; Harford JJ; Hudson L; Irving T; Knupp C; Reedy MK
    IEE Proc Nanobiotechnol; 2003 Dec; 150(3):103-10. PubMed ID: 16468939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Crystalline" myosin cross-bridge array in relaxed bony fish muscle. Low-angle x-ray diffraction from plaice fin muscle and its interpretation.
    Harford J; Squire J
    Biophys J; 1986 Jul; 50(1):145-55. PubMed ID: 3730499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of actin-rich filaments of muscles according to x-ray diffraction.
    SELBY CC; BEAR RS
    J Biophys Biochem Cytol; 1956 Jan; 2(1):71-85. PubMed ID: 13295312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.
    Tregear RT; Edwards RJ; Irving TC; Poole KJ; Reedy MC; Schmitz H; Towns-Andrews E; Reedy MK
    Biophys J; 1998 Mar; 74(3):1439-51. PubMed ID: 9512040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The earliest molecular response to stretch of insect flight muscle as revealed by fast X-ray diffraction recording.
    Iwamoto H
    Sci Rep; 2017 Feb; 7():42272. PubMed ID: 28176871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of long-range myofibrillar crystallinity in insect flight muscle as examined by X-ray cryomicrodiffraction.
    Iwamoto H; Inoue K; Yagi N
    Proc Biol Sci; 2006 Mar; 273(1587):677-85. PubMed ID: 16608686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of myosin/paramyosin filaments from a molluscan smooth muscle.
    Castellani L; Vibert P; Cohen C
    J Mol Biol; 1983 Jul; 167(4):853-72. PubMed ID: 6876168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.