These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26605425)

  • 1. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.
    Li Q; Chen B; Lin P; Zhou J; Zhan J; Shen Q; Pan X
    Int J Phytoremediation; 2016; 18(2):103-9. PubMed ID: 26605425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes.
    Deng L; Geng M; Zhu D; Zhou W; Langdon A; Wu H; Yu Y; Zhu Z; Wang Y
    Bioresour Technol; 2012 Mar; 107():41-5. PubMed ID: 22248798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of biosorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions using Adansonia digitata root powders.
    Ekere NR; Agwogie AB; Ihedioha JN
    Int J Phytoremediation; 2016; 18(2):116-25. PubMed ID: 26267780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption dynamics and mechanism of aqueous sulfachloropyridazine and analogues using the root powder of recyclable long-root Eichhornia crassipes.
    Liu L; Hu S; Shen G; Farooq U; Zhang W; Lin S; Lin K
    Chemosphere; 2018 Apr; 196():409-417. PubMed ID: 29316467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes).
    Newete SW; Erasmus BF; Weiersbye IM; Byrne MJ
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20805-20818. PubMed ID: 27475440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lake contamination by accumulation of heavy metal ions in Eichhornia crassipes: a case study of Rankala Lake, Kolhapur (India).
    Sabale S; Jadhav V; Jadhav D; Mohite BS; Patil KJ
    J Environ Sci Eng; 2010 Apr; 52(2):155-6. PubMed ID: 21114124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems.
    Mahamadi C; Nharingo T
    Bioresour Technol; 2010 Feb; 101(3):859-64. PubMed ID: 19773154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents.
    Lin S; Huang W; Yang H; Sun S; Yu J
    Bioresour Technol; 2020 Oct; 314():123749. PubMed ID: 32623285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive adsorption of metals on cabbage waste from multi-metal solutions.
    Hossain MA; Ngo HH; Guo WS; Nghiem LD; Hai FI; Vigneswaran S; Nguyen TV
    Bioresour Technol; 2014 May; 160():79-88. PubMed ID: 24461255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-absorption of Ni and Cd on Eichhornia crassipes root thin film.
    Elfeky SA; Imam H; Alsherbini AA
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):8220-6. PubMed ID: 23702568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond.
    Pandey VC
    Int J Phytoremediation; 2016; 18(5):450-2. PubMed ID: 26595413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes.
    Lin S; Yang H; Na Z; Lin K
    Chemosphere; 2018 Feb; 192():258-266. PubMed ID: 29107877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of As(V) onto dried alligator weed root: role of metal (hydro) oxides.
    Chen J; Tao W; Sun C
    Int J Phytoremediation; 2016; 18(4):315-20. PubMed ID: 26458188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes.
    Wanyonyi WC; Onyari JM; Shiundu PM
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):362-6. PubMed ID: 23839152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water hyacinths (Eichhornia crassipes) as indicators of heavy metal impact of a large landfill on the Almendares River near Havana, Cuba.
    Olivares-Rieumont S; Lima L; De la Rosa D; Graham DW; Columbie I; Santana JL; Sánchez MJ
    Bull Environ Contam Toxicol; 2007 Dec; 79(6):583-7. PubMed ID: 17985070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of Pb, Zn, Cd, and Mn Removal from Karst Water by
    Zhou JM; Jiang ZC; Qin XQ; Zhang LK; Huang QB; Xu GL; Dionysiou DD
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32722539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions.
    Huang Z; Wu Q; Liu S; Liu T; Zhang B
    Carbohydr Polym; 2013 Sep; 97(2):496-501. PubMed ID: 23911476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified SBA-15 mesoporous silica for heavy metal ions remediation.
    Mureseanu M; Reiss A; Stefanescu I; David E; Parvulescu V; Renard G; Hulea V
    Chemosphere; 2008 Nov; 73(9):1499-504. PubMed ID: 18760443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.
    Seyedein Ghannad SMR; Lotfollahi MN
    Water Sci Technol; 2018 Mar; 77(5-6):1591-1601. PubMed ID: 29595161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.