These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26605600)

  • 1. Improving Generalized Born Models by Exploiting Connections to Polarizable Continuum Models. II. Corrections for Salt Effects.
    Lange AW; Herbert JM
    J Chem Theory Comput; 2012 Nov; 8(11):4381-92. PubMed ID: 26605600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple polarizable continuum solvation model for electrolyte solutions.
    Lange AW; Herbert JM
    J Chem Phys; 2011 May; 134(20):204110. PubMed ID: 21639427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Generalized Born Models by Exploiting Connections to Polarizable Continuum Models. I. An Improved Effective Coulomb Operator.
    Lange AW; Herbert JM
    J Chem Theory Comput; 2012 Jun; 8(6):1999-2011. PubMed ID: 26593834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and accurate solvation energy calculation from polarizable continuum models.
    Lin ST; Hsieh CM
    J Chem Phys; 2006 Sep; 125(12):124103. PubMed ID: 17014162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation dynamics in ionic fluids: an extended Debye-Hückel dielectric continuum model.
    Song X
    J Chem Phys; 2009 Jul; 131(4):044503. PubMed ID: 19655890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarizable charges in a generalized Born reaction potential.
    Poier PP; Jensen F
    J Chem Phys; 2020 Jul; 153(2):024111. PubMed ID: 32668916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular Debye-Hückel theory and its applications to electrolyte solutions.
    Xiao T; Song X
    J Chem Phys; 2011 Sep; 135(10):104104. PubMed ID: 21932873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.
    Lipparini F; Barone V
    J Chem Theory Comput; 2011 Nov; 7(11):3711-24. PubMed ID: 26598266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: the switching/Gaussian approach.
    Lange AW; Herbert JM
    J Chem Phys; 2010 Dec; 133(24):244111. PubMed ID: 21197980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach.
    Klamt A; Moya C; Palomar J
    J Chem Theory Comput; 2015 Sep; 11(9):4220-5. PubMed ID: 26575917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation.
    Li H; Jensen JH
    J Comput Chem; 2004 Sep; 25(12):1449-62. PubMed ID: 15224389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous surface charge polarizable continuum models of solvation. I. General formalism.
    Scalmani G; Frisch MJ
    J Chem Phys; 2010 Mar; 132(11):114110. PubMed ID: 20331284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Debye-Hückel theory for mixtures of rigid rodlike ions and salt.
    Bohinc K; Rescic J; Maset S; May S
    J Chem Phys; 2011 Feb; 134(7):074111. PubMed ID: 21341832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit solvation based on generalized Born theory in different dielectric environments.
    Feig M; Im W; Brooks CL
    J Chem Phys; 2004 Jan; 120(2):903-11. PubMed ID: 15267926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models.
    You ZQ; Mewes JM; Dreuw A; Herbert JM
    J Chem Phys; 2015 Nov; 143(20):204104. PubMed ID: 26627947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building cavities in a fluid of spherical or rod-like particles: a contribution to the solvation free energy in isotropic and anisotropic polarizable continuum model.
    Benzi C; Cossi M; Improta R; Barone V
    J Comput Chem; 2005 Aug; 26(11):1096-105. PubMed ID: 15929089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An n log n Generalized Born Approximation.
    Anandakrishnan R; Daga M; Onufriev AV
    J Chem Theory Comput; 2011 Mar; 7(3):544-59. PubMed ID: 26596289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.