These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 26605726)

  • 1. Magnetic Exchange Couplings from Semilocal Functionals Evaluated Nonself-Consistently on Hybrid Densities: Insights on Relative Importance of Exchange, Correlation, and Delocalization.
    Phillips JJ; Peralta JE
    J Chem Theory Comput; 2012 Sep; 8(9):3147-58. PubMed ID: 26605726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic exchange couplings evaluated with Rung 3.5 density functionals.
    Phillips JJ; Peralta JE; Janesko BG
    J Chem Phys; 2011 Jun; 134(21):214101. PubMed ID: 21663338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of range-separated Hartree-Fock exchange in the calculation of magnetic exchange couplings in transition metal complexes.
    Phillips JJ; Peralta JE
    J Chem Phys; 2011 Jan; 134(3):034108. PubMed ID: 21261331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the Next Generation of Density Functionals: Escaping the Zero-Sum Game by Using the Exact-Exchange Energy Density.
    Kaupp M; Wodyński A; Arbuznikov AV; Fürst S; Schattenberg CJ
    Acc Chem Res; 2024 Jul; 57(13):1815-1826. PubMed ID: 38905497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals.
    Körzdörfer T; Brédas JL
    Acc Chem Res; 2014 Nov; 47(11):3284-91. PubMed ID: 24784485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes.
    Fitzhugh HC; Furness JW; Pederson MR; Peralta JE; Sun J
    J Chem Theory Comput; 2023 Sep; 19(17):5760-5772. PubMed ID: 37582098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semilocal and hybrid density embedding calculations of ground-state charge-transfer complexes.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2013 Mar; 138(12):124112. PubMed ID: 23556714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the performance of local, semilocal, and nonlocal exchange-correlation functionals on transition metal molecules.
    Ramírez-Solís A
    J Chem Phys; 2007 Jun; 126(22):224105. PubMed ID: 17581042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Diels-Alder reaction energies from efficient density functional calculations.
    Mezei PD; Csonka GI; Kállay M
    J Chem Theory Comput; 2015 Jun; 11(6):2879-88. PubMed ID: 26575577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frozen density embedding with hybrid functionals.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2010 Oct; 133(16):164111. PubMed ID: 21033779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical auxiliary basis implementation of Rung 3.5 functionals.
    Janesko BG; Scalmani G; Frisch MJ
    J Chem Phys; 2014 Jul; 141(3):034103. PubMed ID: 25053297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
    Bates JE; Mezei PD; Csonka GI; Sun J; Ruzsinszky A
    J Chem Theory Comput; 2017 Jan; 13(1):100-109. PubMed ID: 27996258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates.
    Göltl F; Hafner J
    J Chem Phys; 2012 Feb; 136(6):064503. PubMed ID: 22360191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
    Otero-de-la-Roza A; DiLabio GA; Johnson ER
    J Chem Theory Comput; 2016 Jul; 12(7):3160-75. PubMed ID: 27243962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Range-Corrected Hybrids Based on a New Model Exchange Hole.
    Weintraub E; Henderson TM; Scuseria GE
    J Chem Theory Comput; 2009 Apr; 5(4):754-62. PubMed ID: 26609580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From local hybrid functionals to "localized local hybrid" potentials: formalism and thermochemical tests.
    Arbuznikov AV; Kaupp M; Bahmann H
    J Chem Phys; 2006 May; 124(20):204102. PubMed ID: 16774314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Exchange Couplings with Range-Separated Hybrid Density Functionals.
    Peralta JE; Melo JI
    J Chem Theory Comput; 2010 Jun; 6(6):1894-9. PubMed ID: 26615848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking the Performance of Exchange-Correlation Functionals for Predicting Two-Photon Absorption Strengths.
    Beerepoot MTP; Alam MM; Bednarska J; Bartkowiak W; Ruud K; Zaleśny R
    J Chem Theory Comput; 2018 Jul; 14(7):3677-3685. PubMed ID: 29852067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. II. Electronic structure and photoluminescence spectra.
    Göltl F; Hafner J
    J Chem Phys; 2012 Feb; 136(6):064502. PubMed ID: 22360190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.
    Corminboeuf C
    Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.