These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 26605911)
1. Shared Molecular Mechanisms in Alzheimer's Disease and Amyotrophic Lateral Sclerosis: Neurofilament-Dependent Transport of sAPP, FUS, TDP-43 and SOD1, with Endoplasmic Reticulum-Like Tubules. Muresan V; Ladescu Muresan Z Neurodegener Dis; 2016; 16(1-2):55-61. PubMed ID: 26605911 [TBL] [Abstract][Full Text] [Related]
2. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Soo KY; Halloran M; Sundaramoorthy V; Parakh S; Toth RP; Southam KA; McLean CA; Lock P; King A; Farg MA; Atkin JD Acta Neuropathol; 2015 Nov; 130(5):679-97. PubMed ID: 26298469 [TBL] [Abstract][Full Text] [Related]
3. Functional interaction between amyloid-β precursor protein and peripherin neurofilaments: a shared pathway leading to Alzheimer's disease and amyotrophic lateral sclerosis? Muresan V; Villegas C; Ladescu Muresan Z Neurodegener Dis; 2014; 13(2-3):122-5. PubMed ID: 24009040 [TBL] [Abstract][Full Text] [Related]
4. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Keller BA; Volkening K; Droppelmann CA; Ang LC; Rademakers R; Strong MJ Acta Neuropathol; 2012 Nov; 124(5):733-47. PubMed ID: 22941224 [TBL] [Abstract][Full Text] [Related]
5. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion. Pokrishevsky E; Grad LI; Cashman NR Sci Rep; 2016 Mar; 6():22155. PubMed ID: 26926802 [TBL] [Abstract][Full Text] [Related]
6. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Deng HX; Zhai H; Bigio EH; Yan J; Fecto F; Ajroud K; Mishra M; Ajroud-Driss S; Heller S; Sufit R; Siddique N; Mugnaini E; Siddique T Ann Neurol; 2010 Jun; 67(6):739-48. PubMed ID: 20517935 [TBL] [Abstract][Full Text] [Related]
7. From nucleation to widespread propagation: A prion-like concept for ALS. Maniecka Z; Polymenidou M Virus Res; 2015 Sep; 207():94-105. PubMed ID: 25656065 [TBL] [Abstract][Full Text] [Related]
8. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. Kabashi E; Bercier V; Lissouba A; Liao M; Brustein E; Rouleau GA; Drapeau P PLoS Genet; 2011 Aug; 7(8):e1002214. PubMed ID: 21829392 [TBL] [Abstract][Full Text] [Related]
9. Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Bastow EL; Gourlay CW; Tuite MF Biochem Soc Trans; 2011 Oct; 39(5):1482-7. PubMed ID: 21936838 [TBL] [Abstract][Full Text] [Related]
10. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Pham J; Keon M; Brennan S; Saksena N Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32422969 [TBL] [Abstract][Full Text] [Related]
11. Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Blokhuis AM; Koppers M; Groen EJN; van den Heuvel DMA; Dini Modigliani S; Anink JJ; Fumoto K; van Diggelen F; Snelting A; Sodaar P; Verheijen BM; Demmers JAA; Veldink JH; Aronica E; Bozzoni I; den Hertog J; van den Berg LH; Pasterkamp RJ Acta Neuropathol; 2016 Aug; 132(2):175-196. PubMed ID: 27164932 [TBL] [Abstract][Full Text] [Related]
12. Extracellular wildtype and mutant SOD1 induces ER-Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells. Sundaramoorthy V; Walker AK; Yerbury J; Soo KY; Farg MA; Hoang V; Zeineddine R; Spencer D; Atkin JD Cell Mol Life Sci; 2013 Nov; 70(21):4181-95. PubMed ID: 23765103 [TBL] [Abstract][Full Text] [Related]
13. Stress signaling from the endoplasmic reticulum: A central player in the pathogenesis of amyotrophic lateral sclerosis. Walker AK; Atkin JD IUBMB Life; 2011 Sep; 63(9):754-63. PubMed ID: 21834058 [TBL] [Abstract][Full Text] [Related]
15. Pathological Modification of TDP-43 in Amyotrophic Lateral Sclerosis with SOD1 Mutations. Jeon GS; Shim YM; Lee DY; Kim JS; Kang M; Ahn SH; Shin JY; Geum D; Hong YH; Sung JJ Mol Neurobiol; 2019 Mar; 56(3):2007-2021. PubMed ID: 29982983 [TBL] [Abstract][Full Text] [Related]
16. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Da Cruz S; Cleveland DW Curr Opin Neurobiol; 2011 Dec; 21(6):904-19. PubMed ID: 21813273 [TBL] [Abstract][Full Text] [Related]
17. Hu antigen R (HuR) is a positive regulator of the RNA-binding proteins TDP-43 and FUS/TLS: implications for amyotrophic lateral sclerosis. Lu L; Zheng L; Si Y; Luo W; Dujardin G; Kwan T; Potochick NR; Thompson SR; Schneider DA; King PH J Biol Chem; 2014 Nov; 289(46):31792-31804. PubMed ID: 25239623 [TBL] [Abstract][Full Text] [Related]
18. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Volkening K; Leystra-Lantz C; Yang W; Jaffee H; Strong MJ Brain Res; 2009 Dec; 1305():168-82. PubMed ID: 19815002 [TBL] [Abstract][Full Text] [Related]
19. RNA and Protein Interactors with TDP-43 in Human Spinal-Cord Lysates in Amyotrophic Lateral Sclerosis. Volkening K; Keller BA; Leystra-Lantz C; Strong MJ J Proteome Res; 2018 Apr; 17(4):1712-1729. PubMed ID: 29513014 [TBL] [Abstract][Full Text] [Related]