These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 26605979)

  • 41. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors.
    Ruiz FM; Francis SM; Tintoré M; Ferreira R; Gil-Redondo R; Morreale A; Ortiz ÁR; Eritja R; Fàbrega C
    ChemMedChem; 2012 Dec; 7(12):2168-78. PubMed ID: 23109358
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors.
    Bobola MS; Finn LS; Ellenbogen RG; Geyer JR; Berger MS; Braga JM; Meade EH; Gross ME; Silber JR
    Clin Cancer Res; 2005 Oct; 11(20):7405-14. PubMed ID: 16243814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional variants of human APE1 rescue the DNA repair defects of the yeast AP endonuclease/3'-diesterase-deficient strain.
    Wang Z; Ayoub E; Mazouzi A; Grin I; Ishchenko AA; Fan J; Yang X; Harihar T; Saparbaev M; Ramotar D
    DNA Repair (Amst); 2014 Oct; 22():53-66. PubMed ID: 25108836
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel role for Gadd45α in base excision repair: modulation of APE1 activity by the direct interaction of Gadd45α with PCNA.
    Kim HL; Kim SU; Seo YR
    Biochem Biophys Res Commun; 2013 May; 434(2):185-90. PubMed ID: 23485469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells.
    Krutá M; Bálek L; Hejnová R; Dobšáková Z; Eiselleová L; Matulka K; Bárta T; Fojtík P; Fajkus J; Hampl A; Dvořák P; Rotrekl V
    Stem Cells; 2013 Apr; 31(4):693-702. PubMed ID: 23315699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular enzyme-powered DNA circuit with a tunable amplifier for miRNA imaging.
    Yu Y; Li L; Li G; Zhou X; Deng T; Liang M; Nie G
    Chem Commun (Camb); 2021 Apr; 57(31):3753-3756. PubMed ID: 33876121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cross-talk-free dual-color fluorescence cross-correlation spectroscopy for the study of enzyme activity.
    Lee W; Lee YI; Lee J; Davis LM; Deininger P; Soper SA
    Anal Chem; 2010 Feb; 82(4):1401-10. PubMed ID: 20073480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1.
    Zhou XM; Zhuo Y; Tu TT; Yuan R; Chai YQ
    Anal Chem; 2022 Jun; 94(24):8732-8739. PubMed ID: 35678832
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymer-based dense fluidic networks for high throughput screening with ultrasensitive fluorescence detection.
    Okagbare PI; Soper SA
    Electrophoresis; 2010 Sep; 31(18):3074-82. PubMed ID: 20872611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence-Enhanced Dual-Driven "OR-AND" DNA Logic Platform for Accurate Cell Subtype Identification.
    Zhao T; Shi J; Wang J; Cui Y; Yang Y; Xu S; Luo X
    Anal Chem; 2023 Feb; 95(6):3525-3531. PubMed ID: 36740823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An activatable DNA nanodevice for correlated imaging of apoptosis-related dual proteins.
    Li Z; Feng X; Hu W; Li L
    Nanoscale; 2022 May; 14(17):6465-6470. PubMed ID: 35416226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role and potential targeting of hepatic apurinic/apyrimidinic endonuclease-1 and cyclin-dependent kinase-4 in hepatocellular carcinoma.
    Can J Physiol Pharmacol; 2018 Mar; 96(3):x. PubMed ID: 28679059
    [No Abstract]   [Full Text] [Related]  

  • 53. Live-cell imaging of human apurinic/apyrimidinic endonuclease 1 in the nucleus and nucleolus using a chaperone@DNA probe.
    Cao X; Zheng J; Zhang R; Sun Y; Zhao M
    Nucleic Acids Res; 2024 May; 52(8):e41. PubMed ID: 38554110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chimeric d/l-DNA Probes of Base Excision Repair Enable Real-Time Monitoring of Thymine DNA Glycosylase Activity in Live Cells.
    Zhong W; Sczepanski JT
    J Am Chem Soc; 2023 Aug; 145(31):17066-17074. PubMed ID: 37493592
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Fluorescence assay for the detection of apurinic/apyrimidinic endonuclease 1 (APE1) activity in human blood samples].
    Wang JY; Zhao MP
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Jun; 51(3):487-492. PubMed ID: 31209420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescent Probes of DNA Repair.
    Wilson DL; Kool ET
    ACS Chem Biol; 2018 Jul; 13(7):1721-1733. PubMed ID: 29156135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unimolecular Chemically Modified DNA Fluorescent Probe for One-Step Quantitative Measurement of the Activity of Human Apurinic/Apyrimidinic Endonuclease 1 in Biological Samples.
    Fang S; Chen L; Zhao M
    Anal Chem; 2015 Dec; 87(24):11952-6. PubMed ID: 26605979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endoribonuclease activity of human apurinic/apyrimidinic endonuclease 1 revealed by a real-time fluorometric assay.
    Kim SE; Gorrell A; Rader SD; Lee CH
    Anal Biochem; 2010 Mar; 398(1):69-75. PubMed ID: 19932678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A specific DNA-nanoprobe for tracking the activities of human apurinic/apyrimidinic endonuclease 1 in living cells.
    Zhai J; Liu Y; Huang S; Fang S; Zhao M
    Nucleic Acids Res; 2017 Apr; 45(6):e45. PubMed ID: 27923991
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.