These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26606132)

  • 1. Assessing Low Redox Stability of Myoglobin Relative to Rapid Hemin Loss from Hemoglobin.
    Cai H; Tatiyaborworntham N; Yin J; Richards MP
    J Food Sci; 2016 Jan; 81(1):C42-8. PubMed ID: 26606132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate.
    Yin J; Zhang W; Richards MP
    Food Chem; 2017 Nov; 234():230-235. PubMed ID: 28551230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of heme protein-mediated lipid oxidation using hemoglobin and myoglobin variants in raw and heated washed muscle.
    Grunwald EW; Richards MP
    J Agric Food Chem; 2006 Oct; 54(21):8271-80. PubMed ID: 17032039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site E14 in hemoglobins and myoglobins: a key residue that affects hemin loss and lipid oxidation capacity.
    Cai H; Richards MP
    J Agric Food Chem; 2012 Aug; 60(31):7729-34. PubMed ID: 22681513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myoglobin and haemoglobin-mediated lipid oxidation in washed muscle: observations on crosslinking, ferryl formation, porphyrin degradation, and haemin loss rate.
    Lee SK; Tatiyaborworntham N; Grunwald EW; Richards MP
    Food Chem; 2015 Jan; 167():258-63. PubMed ID: 25148987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors Affecting Lipid Oxidation Due to Pig and Turkey Hemolysate.
    Wu H; Yin J; Zhang J; Richards MP
    J Agric Food Chem; 2017 Sep; 65(36):8011-8017. PubMed ID: 28829595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 4-hydroxy-2-nonenal on myoglobin-mediated lipid oxidation when varying histidine content and hemin affinity.
    Grunwald EW; Tatiyaborworntham N; Faustman C; Richards MP
    Food Chem; 2017 Jul; 227():289-297. PubMed ID: 28274434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss.
    Aranda R; Cai H; Worley CE; Levin EJ; Li R; Olson JS; Phillips GN; Richards MP
    Proteins; 2009 Apr; 75(1):217-30. PubMed ID: 18831041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenylalanine substitution at site B10 (L29F) inhibits metmyoglobin formation and myoglobin-mediated lipid oxidation in washed fish muscle: mechanistic implications.
    Richards MP; Cai H; Grunwald EW
    J Agric Food Chem; 2009 Sep; 57(17):7997-8002. PubMed ID: 19678685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin.
    Cai H; Grunwald EW; Park SY; Lei B; Richards MP
    J Agric Food Chem; 2013 May; 61(17):4180-7. PubMed ID: 23570608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies with myoglobin variants indicate that released hemin is the primary promoter of lipid oxidation in washed fish muscle.
    Grunwald EW; Richards MP
    J Agric Food Chem; 2006 Jun; 54(12):4452-60. PubMed ID: 16756380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of holomyoglobin is determined by heme affinity.
    Hargrove MS; Olson JS
    Biochemistry; 1996 Sep; 35(35):11310-8. PubMed ID: 8784185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pro-oxidative characteristics of trout hemoglobin and myoglobin: a role for released heme in oxidation of lipids.
    Richards MP; Dettmann MA; Grunwald EW
    J Agric Food Chem; 2005 Dec; 53(26):10231-8. PubMed ID: 16366720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of methemoglobin (MetHb) formation and hemin loss in the pro-oxidant activity of fish hemoglobins.
    Maestre R; Pazos M; Medina I
    J Agric Food Chem; 2009 Aug; 57(15):7013-21. PubMed ID: 19722582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions.
    Jensen B; Fago A
    J Inorg Biochem; 2018 May; 182():133-140. PubMed ID: 29459272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms involved in hemoglobin-mediated oxidation of lipids in washed fish muscle and inhibitory effects of phospholipase A2.
    Tatiyaborworntham N; Richards MP
    J Sci Food Agric; 2018 May; 98(7):2816-2823. PubMed ID: 29134657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural factors governing hemin dissociation from metmyoglobin.
    Hargrove MS; Wilkinson AJ; Olson JS
    Biochemistry; 1996 Sep; 35(35):11300-9. PubMed ID: 8784184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of aldehyde lipid oxidation products on myoglobin.
    Lynch MP; Faustman C
    J Agric Food Chem; 2000 Mar; 48(3):600-4. PubMed ID: 10725121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The D-helix in myoglobin and in the beta subunit of hemoglobin is required for the retention of heme.
    Whitaker TL; Berry MB; Ho EL; Hargrove MS; Phillips GN; Komiyama NH; Nagai K; Olson JS
    Biochemistry; 1995 Jul; 34(26):8221-6. PubMed ID: 7599114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics of lipid oxidation-induced oxidation of porcine and bovine oxymyoglobins.
    Suman SP; Faustman C; Stamer SL; Liebler DC
    Proteomics; 2007 Feb; 7(4):628-640. PubMed ID: 17309108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.