These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26606217)

  • 1. Modeling Charge Resonance in Cationic Molecular Clusters: Combining DFT-Tight Binding with Configuration Interaction.
    Rapacioli M; Spiegelman F; Scemama A; Mirtschink A
    J Chem Theory Comput; 2011 Jan; 7(1):44-55. PubMed ID: 26606217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.
    Simon A; Iftner C; Mascetti J; Spiegelman F
    J Phys Chem A; 2015 Mar; 119(11):2449-67. PubMed ID: 25650885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters.
    Rapacioli M; Spiegelman F; Talbi D; Mineva T; Goursot A; Heine T; Seifert G
    J Chem Phys; 2009 Jun; 130(24):244304. PubMed ID: 19566150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach.
    Korchagina KA; Simon A; Rapacioli M; Spiegelman F; Cuny J
    J Phys Chem A; 2016 Nov; 120(45):9089-9100. PubMed ID: 27809528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70).
    Witek HA; Irle S; Zheng G; de Jong WA; Morokuma K
    J Chem Phys; 2006 Dec; 125(21):214706. PubMed ID: 17166039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate hydrogen bond energies within the density functional tight binding method.
    Domínguez A; Niehaus TA; Frauenheim T
    J Phys Chem A; 2015 Apr; 119(14):3535-44. PubMed ID: 25763597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Multilayers on TiO
    Selli D; Fazio G; Seifert G; Di Valentin C
    J Chem Theory Comput; 2017 Aug; 13(8):3862-3873. PubMed ID: 28679048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium.
    Dolgonos G; Aradi B; Moreira NH; Frauenheim T
    J Chem Theory Comput; 2010 Jan; 6(1):266-78. PubMed ID: 26614337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods.
    Scholz R; Luschtinetz R; Seifert G; Jägeler-Hoheisel T; Körner C; Leo K; Rapacioli M
    J Phys Condens Matter; 2013 Nov; 25(47):473201. PubMed ID: 24135026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer.
    Sato T; Tsuneda T; Hirao K
    J Chem Phys; 2005 Sep; 123(10):104307. PubMed ID: 16178597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extended DFTB-CI model for charge-transfer excited states in cationic molecular clusters: model studies versus ab initio calculations in small PAH clusters.
    Dontot L; Suaud N; Rapacioli M; Spiegelman F
    Phys Chem Chem Phys; 2016 Feb; 18(5):3545-57. PubMed ID: 26750534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt-Ru Alloys.
    Shi H; Koskinen P; Ramasubramaniam A
    J Phys Chem A; 2017 Mar; 121(12):2497-2502. PubMed ID: 28267337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms.
    Yen TW; Lai SK
    J Chem Phys; 2015 Feb; 142(8):084313. PubMed ID: 25725737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A density functional tight binding/force field approach to the interaction of molecules with rare gas clusters: application to (C6H6)(+/0)Ar(n) clusters.
    Iftner C; Simon A; Korchagina K; Rapacioli M; Spiegelman F
    J Chem Phys; 2014 Jan; 140(3):034301. PubMed ID: 25669373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.