These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26606290)
21. Computational studies of Cu(II)[peptide] binding motifs: Cu[HGGG] and Cu[HG] as models for Cu(II) binding to the prion protein octarepeat region. Pushie MJ; Rauk A J Biol Inorg Chem; 2003 Jan; 8(1-2):53-65. PubMed ID: 12459899 [TBL] [Abstract][Full Text] [Related]
22. Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Klewpatinond M; Viles JH Biochem J; 2007 Jun; 404(3):393-402. PubMed ID: 17331076 [TBL] [Abstract][Full Text] [Related]
23. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Viles JH; Cohen FE; Prusiner SB; Goodin DB; Wright PE; Dyson HJ Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2042-7. PubMed ID: 10051591 [TBL] [Abstract][Full Text] [Related]
24. Can copper binding to the prion protein generate a misfolded form of the protein? Pushie MJ; Rauk A; Jirik FR; Vogel HJ Biometals; 2009 Feb; 22(1):159-75. PubMed ID: 19140013 [TBL] [Abstract][Full Text] [Related]
25. The copper(II) adduct of the unstructured region of the amyloidogenic fragment derived from the human prion protein is redox-active at physiological pH. Shearer J; Soh P Inorg Chem; 2007 Feb; 46(3):710-9. PubMed ID: 17257012 [TBL] [Abstract][Full Text] [Related]
26. Structural and dynamic characterization of copper(II) binding of the human prion protein outside the octarepeat region. Berti F; Gaggelli E; Guerrini R; Janicka A; Kozlowski H; Legowska A; Miecznikowska H; Migliorini C; Pogni R; Remelli M; Rolka K; Valensin D; Valensin G Chemistry; 2007; 13(7):1991-2001. PubMed ID: 17152102 [TBL] [Abstract][Full Text] [Related]
27. Deconvoluting the Cu2+ binding modes of full-length prion protein. Klewpatinond M; Davies P; Bowen S; Brown DR; Viles JH J Biol Chem; 2008 Jan; 283(4):1870-81. PubMed ID: 18042548 [TBL] [Abstract][Full Text] [Related]
28. Identification of the copper(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: evidence for multiple isomers at low copper(II) loadings. Srikanth R; Wilson J; Burns CS; Vachet RW Biochemistry; 2008 Sep; 47(35):9258-68. PubMed ID: 18690704 [TBL] [Abstract][Full Text] [Related]
29. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein. McDonald A; Pushie MJ; Millhauser GL; George GN J Phys Chem B; 2013 Nov; 117(44):13822-41. PubMed ID: 24102071 [TBL] [Abstract][Full Text] [Related]
30. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Miura T; Hori-i A; Mototani H; Takeuchi H Biochemistry; 1999 Aug; 38(35):11560-9. PubMed ID: 10471308 [TBL] [Abstract][Full Text] [Related]
31. Structural models for Cu(II) bound to the fragment 92-96 of the human prion protein. Grande-Aztatzi R; Rivillas-Acevedo L; Quintanar L; Vela A J Phys Chem B; 2013 Jan; 117(3):789-99. PubMed ID: 23240680 [TBL] [Abstract][Full Text] [Related]
32. Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Gielnik M; Szymańska A; Dong X; Jarvet J; Svedružić ŽM; Gräslund A; Kozak M; Wärmländer SKTS Biochemistry; 2023 Jun; 62(11):1689-1705. PubMed ID: 37163663 [TBL] [Abstract][Full Text] [Related]
33. Insertion of beta-alanine in model peptides for copper binding to His96 and His111 of the human prion protein. Rivillas-Acevedo L; Maciel-Barón L; García JE; Juaristi E; Quintanar L J Inorg Biochem; 2013 Sep; 126():104-10. PubMed ID: 23796442 [TBL] [Abstract][Full Text] [Related]
34. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Miura T; Sasaki S; Toyama A; Takeuchi H Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778 [TBL] [Abstract][Full Text] [Related]
35. Copper-induced structural propensities of the amyloidogenic region of human prion protein. Migliorini C; Sinicropi A; Kozlowski H; Luczkowski M; Valensin D J Biol Inorg Chem; 2014 Jun; 19(4-5):635-45. PubMed ID: 24737041 [TBL] [Abstract][Full Text] [Related]
36. The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein. Malaisé M; Schätzl HM; Bürkle A Free Radic Biol Med; 2008 Dec; 45(12):1622-30. PubMed ID: 18824094 [TBL] [Abstract][Full Text] [Related]
37. Early onset prion disease from octarepeat expansion correlates with copper binding properties. Stevens DJ; Walter ED; Rodríguez A; Draper D; Davies P; Brown DR; Millhauser GL PLoS Pathog; 2009 Apr; 5(4):e1000390. PubMed ID: 19381258 [TBL] [Abstract][Full Text] [Related]
38. Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Burns CS; Aronoff-Spencer E; Dunham CM; Lario P; Avdievich NI; Antholine WE; Olmstead MM; Vrielink A; Gerfen GJ; Peisach J; Scott WG; Millhauser GL Biochemistry; 2002 Mar; 41(12):3991-4001. PubMed ID: 11900542 [TBL] [Abstract][Full Text] [Related]
39. Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids. Chaves JA; Sanchez-López C; Gomes MP; Sisnande T; Macedo B; de Oliveira VE; Braga CA; Rangel LP; Silva JL; Quintanar L; Cordeiro Y J Biol Inorg Chem; 2014 Aug; 19(6):839-51. PubMed ID: 24557708 [TBL] [Abstract][Full Text] [Related]
40. Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein. Yamamoto N; Kuwata K J Biol Inorg Chem; 2009 Nov; 14(8):1209-18. PubMed ID: 19585160 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]