These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26606320)

  • 1. Atomistic simulation of hydrophobin HFBII conformation in aqueous and fluorous media and at the water/vacuum interface.
    Raffaini G; Milani R; Ganazzoli F; Resnati G; Metrangolo P
    J Mol Graph Model; 2016 Jan; 63():8-14. PubMed ID: 26606320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation.
    Chang HJ; Lee M; Na S
    Colloids Surf B Biointerfaces; 2019 Jan; 173():128-138. PubMed ID: 30278361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A synthetically modified hydrophobin showing enhanced fluorous affinity.
    Milani R; Pirrie L; Gazzera L; Paananen A; Baldrighi M; Monogioudi E; Cavallo G; Linder M; Resnati G; Metrangolo P
    J Colloid Interface Sci; 2015 Jun; 448():140-7. PubMed ID: 25725398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei.
    Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA
    Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of Trichoderma reesei hydrophobins in solution: interactions, dynamics, and multimer formation.
    Szilvay GR; Nakari-Setälä T; Linder MB
    Biochemistry; 2006 Jul; 45(28):8590-8. PubMed ID: 16834333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and self-assembly of hydrophobins from Trichoderma reesei: low-resolution structural models.
    Torkkeli M; Serimaa R; Ikkala O; Linder M
    Biophys J; 2002 Oct; 83(4):2240-7. PubMed ID: 12324441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.
    Krivosheeva O; Dėdinaitė A; Linder MB; Tilton RD; Claesson PM
    Langmuir; 2013 Feb; 29(8):2683-91. PubMed ID: 23356719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin.
    Sallada ND; Dunn KJ; Berger BW
    Biochemistry; 2018 Feb; 57(5):645-653. PubMed ID: 29277996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q; Kwan AH; Sunde M
    Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface properties of class ii hydrophobins from Trichoderma reesei and influence on bubble stability.
    Cox AR; Cagnol F; Russell AB; Izzard MJ
    Langmuir; 2007 Jul; 23(15):7995-8002. PubMed ID: 17580918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface.
    Fan H; Wang X; Zhu J; Robillard GT; Mark AE
    Proteins; 2006 Sep; 64(4):863-73. PubMed ID: 16770796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of hydrophobin proteins in solution studied by small-angle X-ray scattering.
    Kisko K; Szilvay GR; Vainio U; Linder MB; Serimaa R
    Biophys J; 2008 Jan; 94(1):198-206. PubMed ID: 17827247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobin HFBII in detail: ultrahigh-resolution structure at 0.75 A.
    Hakanpää J; Linder M; Popov A; Schmidt A; Rouvinen J
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):356-67. PubMed ID: 16552136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII.
    Grunér MS; Paananen A; Szilvay GR; Linder MB
    Colloids Surf B Biointerfaces; 2017 Jul; 155():111-117. PubMed ID: 28415028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobin film structure for HFBI and HFBII and mechanism for accelerated film formation.
    Magarkar A; Mele N; Abdel-Rahman N; Butcher S; Torkkeli M; Serimaa R; Paananen A; Linder M; Bunker A
    PLoS Comput Biol; 2014 Jul; 10(7):e1003745. PubMed ID: 25079355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin.
    Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W
    Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution.
    Zykwinska A; Guillemette T; Bouchara JP; Cuenot S
    Biochim Biophys Acta; 2014 Jul; 1844(7):1231-7. PubMed ID: 24732577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification properties of a recombinant class I hydrophobin rHGFI.
    Li W; Gong Y; Xu H; Qiao M; Niu B
    Int J Biol Macromol; 2015 Jan; 72():658-63. PubMed ID: 25241920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering.
    Szilvay GR; Paananen A; Laurikainen K; Vuorimaa E; Lemmetyinen H; Peltonen J; Linder MB
    Biochemistry; 2007 Mar; 46(9):2345-54. PubMed ID: 17297923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.