These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26606377)

  • 1. Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime.
    Cha H; Lee D; Yoon JH; Yoon S
    J Colloid Interface Sci; 2016 Feb; 464():18-24. PubMed ID: 26606377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range.
    Cha H; Yoon JH; Yoon S
    ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles.
    Jung H; Cha H; Lee D; Yoon S
    ACS Nano; 2015 Dec; 9(12):12292-300. PubMed ID: 26467291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Plasmon Coupling of Compositionally Heterogeneous Core-Satellite Nanoassemblies.
    Yoon JH; Zhou Y; Blaber MG; Schatz GC; Yoon S
    J Phys Chem Lett; 2013 May; 4(9):1371-8. PubMed ID: 26282287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films.
    Yen YT; Lu TY; Lee YC; Yu CC; Tsai YC; Tseng YC; Chen HL
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4292-300. PubMed ID: 24620856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet.
    Toma M; Toma K; Michioka K; Ikezoe Y; Obara D; Okamoto K; Tamada K
    Phys Chem Chem Phys; 2011 Apr; 13(16):7459-66. PubMed ID: 21423985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of plasmon coupling on curved interfaces.
    Ni Y; Kan C; Xu J; Liu Y; Xu H; Wang C
    Appl Opt; 2017 Oct; 56(29):8240-8245. PubMed ID: 29047689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of quantum tunneling between two plasmonic nanoparticles.
    Scholl JA; García-Etxarri A; Koh AL; Dionne JA
    Nano Lett; 2013 Feb; 13(2):564-9. PubMed ID: 23245286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes.
    Yang L; Wang H; Yan B; Reinhard BM
    J Phys Chem C Nanomater Interfaces; 2010 Mar; 114(11):4901-4908. PubMed ID: 20606714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum optical response of metallic nanoparticles and dimers.
    Alcaraz de la Osa R; Sanz JM; Saiz JM; González F; Moreno F
    Opt Lett; 2012 Dec; 37(23):5015-7. PubMed ID: 23202122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of Molecular Transition with the Surface Plasmon Resonance of Silver Nanoparticles inside the Restricted Environment of Reverse Micelles.
    Singha D; Sahu DK; Sahu K
    ACS Omega; 2017 Sep; 2(9):5494-5503. PubMed ID: 31457818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime.
    Scholl JA; Garcia-Etxarri A; Aguirregabiria G; Esteban R; Narayan TC; Koh AL; Aizpurua J; Dionne JA
    ACS Nano; 2016 Jan; 10(1):1346-54. PubMed ID: 26639023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase imaging of transition from classical to quantum plasmonic couplings between a metal nanoparticle and a metal surface.
    Wang H; Yu H; Wang Y; Shan X; Chen HY; Tao N
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17564-17570. PubMed ID: 32665434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE.
    Li H; Qiang W; Vuki M; Xu D; Chen HY
    Anal Chem; 2011 Dec; 83(23):8945-52. PubMed ID: 21988285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.