These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26606442)
21. Targeted contrast agent helps to monitor advanced plaque during progression: a magnetic resonance imaging study in rabbits. Zheng J; Ochoa E; Misselwitz B; Yang D; El Naqa I; Woodard PK; Abendschein D Invest Radiol; 2008 Jan; 43(1):49-55. PubMed ID: 18097277 [TBL] [Abstract][Full Text] [Related]
23. MRI of atherothrombosis associated with plaque rupture. Viereck J; Ruberg FL; Qiao Y; Perez AS; Detwiller K; Johnstone M; Hamilton JA Arterioscler Thromb Vasc Biol; 2005 Jan; 25(1):240-5. PubMed ID: 15528478 [TBL] [Abstract][Full Text] [Related]
24. Short term arterial remodelling in the aortae of cholesterol fed New Zealand white rabbits shown in vivo by high-resolution magnetic resonance imaging - implications for human pathology. Hegyi L; Hockings PD; Benson MG; Busza AL; Overend P; Grimsditch DC; Burton KJ; Lloyd H; Whelan GA; Skepper JN; Vidgeon-Hart MP; Carpenter AT; Reid DG; Suckling KE; Weissberg PL Pathol Oncol Res; 2004; 10(3):159-65. PubMed ID: 15448752 [TBL] [Abstract][Full Text] [Related]
25. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Sirol M; Itskovich VV; Mani V; Aguinaldo JG; Fallon JT; Misselwitz B; Weinmann HJ; Fuster V; Toussaint JF; Fayad ZA Circulation; 2004 Jun; 109(23):2890-6. PubMed ID: 15184290 [TBL] [Abstract][Full Text] [Related]
26. [Value of in vivo monitoring of abdominal aortic atherosclerosis by high field magnetic resonance imaging in apoE-/- mice fed a high fat diet or infused with angiotensin II]. ZHAO R; YAO YY; DENG G; JU SH; WANG ZJ; WEN S; CHEN J; JIN H Zhonghua Xin Xue Guan Bing Za Zhi; 2010 Sep; 38(9):823-8. PubMed ID: 21092653 [TBL] [Abstract][Full Text] [Related]
27. Animal models of atherosclerosis and magnetic resonance imaging for monitoring plaque progression. Millon A; Canet-Soulas E; Boussel L; Fayad Z; Douek P Vascular; 2014 Jun; 22(3):221-37. PubMed ID: 24907292 [TBL] [Abstract][Full Text] [Related]
28. Establishing an animal model of unstable atherosclerotic plaques. Chen WQ; Zhang Y; Zhang M; Ji XP; Yin Y; Zhu YF Chin Med J (Engl); 2004 Sep; 117(9):1293-8. PubMed ID: 15377416 [TBL] [Abstract][Full Text] [Related]
29. Matrix metalloproteinase-9 expression in carotid atherosclerotic plaque and contrast-enhanced MRI in a swine model. Jiang XB; Yuan WS; Wang JS; Liu Z; Liu DH; Shi ZS J Neurointerv Surg; 2014 Jan; 6(1):24-8. PubMed ID: 23223397 [TBL] [Abstract][Full Text] [Related]
30. Effect of rosuvastatin on atherosclerotic plaque stability: An intravascular ultrasound elastography study. Li Z; Wang L; Hu X; Zhang P; Chen Y; Liu X; Xu M; Zhang Y; Zhang M Atherosclerosis; 2016 May; 248():27-35. PubMed ID: 26978584 [TBL] [Abstract][Full Text] [Related]
31. Progression and regression of atherosclerotic lesions: monitoring with serial noninvasive magnetic resonance imaging. Helft G; Worthley SG; Fuster V; Fayad ZA; Zaman AG; Corti R; Fallon JT; Badimon JJ Circulation; 2002 Feb; 105(8):993-8. PubMed ID: 11864931 [TBL] [Abstract][Full Text] [Related]
32. Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. Yonemura A; Momiyama Y; Fayad ZA; Ayaori M; Ohmori R; Higashi K; Kihara T; Sawada S; Iwamoto N; Ogura M; Taniguchi H; Kusuhara M; Nagata M; Nakamura H; Tamai S; Ohsuzu F J Am Coll Cardiol; 2005 Mar; 45(5):733-42. PubMed ID: 15734619 [TBL] [Abstract][Full Text] [Related]
33. Use of contrast enhancement and high-resolution 3D black-blood MRI to identify inflammation in atherosclerosis. Hur J; Park J; Kim YJ; Lee HJ; Shim HS; Choe KO; Choi BW JACC Cardiovasc Imaging; 2010 Nov; 3(11):1127-35. PubMed ID: 21071000 [TBL] [Abstract][Full Text] [Related]
34. In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model. Johnstone MT; Botnar RM; Perez AS; Stewart R; Quist WC; Hamilton JA; Manning WJ Arterioscler Thromb Vasc Biol; 2001 Sep; 21(9):1556-60. PubMed ID: 11557688 [TBL] [Abstract][Full Text] [Related]
35. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Moreno PR; Purushothaman KR; Fuster V; O'Connor WN Circulation; 2002 May; 105(21):2504-11. PubMed ID: 12034657 [TBL] [Abstract][Full Text] [Related]
36. Heme oxygenase-1 inhibits progression and destabilization of vulnerable plaques in a rabbit model of atherosclerosis. Li T; Tian H; Zhao Y; An F; Zhang L; Zhang J; Peng J; Zhang Y; Guo Y Eur J Pharmacol; 2011 Dec; 672(1-3):143-52. PubMed ID: 22004613 [TBL] [Abstract][Full Text] [Related]
37. Endothelial cell apoptosis is responsible for the formation of coronary thrombotic atherosclerotic plaques. Xu F; Sun Y; Chen Y; Sun Y; Li R; Liu C; Zhang C; Wang R; Zhang Y Tohoku J Exp Med; 2009 May; 218(1):25-33. PubMed ID: 19398870 [TBL] [Abstract][Full Text] [Related]
38. [In vivo noninvasive detection of vulnerable atherosclerotic plaque by (99)Tc(m)-Annexin V imaging in an atherosclerotic rabbit model.]. Xu JP; Zhao QM; Dong XL; Wang Q; Chen D; Mi HZ; DU HF; Xu ZM Zhonghua Xin Xue Guan Bing Za Zhi; 2008 Oct; 36(10):921-6. PubMed ID: 19102893 [TBL] [Abstract][Full Text] [Related]
39. High-resolution MRI of carotid plaque with a neurovascular coil and contrast-enhanced MR angiography: one-stop shopping for the comprehensive assessment of carotid atherosclerosis. Tartari S; Rizzati R; Righi R; Deledda A; Capello K; Soverini R; Benea G AJR Am J Roentgenol; 2011 May; 196(5):1164-71. PubMed ID: 21512087 [TBL] [Abstract][Full Text] [Related]
40. MRI of early- and late-stage arterial remodeling in a low-level cholesterol-fed rabbit model of atherosclerosis. Ronald JA; Walcarius R; Robinson JF; Hegele RA; Rutt BK; Rogers KA J Magn Reson Imaging; 2007 Oct; 26(4):1010-9. PubMed ID: 17896368 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]