These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26606493)

  • 1. A Comparative Study for Molecular Dynamics Simulations of Liquid Benzene.
    Fu CF; Tian SX
    J Chem Theory Comput; 2011 Jul; 7(7):2240-52. PubMed ID: 26606493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions.
    Ricci CG; de Andrade AS; Mottin M; Netz PA
    J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of structure and dynamics of organic molecular crystals.
    Nemkevich A; Bürgi HB; Spackman MA; Corry B
    Phys Chem Chem Phys; 2010 Dec; 12(45):14916-29. PubMed ID: 20944862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies.
    Kashefolgheta S; Wang S; Acree WE; Hünenberger PH
    Phys Chem Chem Phys; 2021 Jun; 23(23):13055-13074. PubMed ID: 34105547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Tension of Organic Liquids Using the OPLS/AA Force Field.
    Zubillaga RA; Labastida A; Cruz B; Martínez JC; Sánchez E; Alejandre J
    J Chem Theory Comput; 2013 Mar; 9(3):1611-5. PubMed ID: 26587622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids.
    Sprenger KG; Jaeger VW; Pfaendtner J
    J Phys Chem B; 2015 May; 119(18):5882-95. PubMed ID: 25853313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of GAFF and OPLS Force Fields for Urea: Crystal and Aqueous Solution Properties.
    Anker S; McKechnie D; Mulheran P; Sefcik J; Johnston K
    Cryst Growth Des; 2024 Jan; 24(1):143-158. PubMed ID: 38188266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies.
    Garrido NM; Queimada AJ; Jorge M; Macedo EA; Economou IG
    J Chem Theory Comput; 2009 Sep; 5(9):2436-46. PubMed ID: 26616624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an AMBER-compatible transferable force field for poly(ethylene glycol) ethers (glymes).
    Barbosa NSV; Zhang Y; Lima ERA; Tavares FW; Maginn EJ
    J Mol Model; 2017 Jun; 23(6):194. PubMed ID: 28550376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields.
    Smith MD; Rao JS; Segelken E; Cruz L
    J Chem Inf Model; 2015 Dec; 55(12):2587-95. PubMed ID: 26629886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational state-specific free energy differences by one-step perturbation: protein secondary structure preferences of the GROMOS 43A1 and 53A6 force fields.
    Lin Z; Van Gunsteren WF; Liu H
    J Comput Chem; 2011 Jul; 32(10):2290-7. PubMed ID: 21541965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio and force field molecular dynamics study of bulk organophosphorus and organochlorine liquid structures.
    Priest CW; Greathouse JA; Kinnan MK; Burton PD; Rempe SB
    J Chem Phys; 2021 Feb; 154(8):084503. PubMed ID: 33639727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved OPLS-AA force field for carbohydrates.
    Kony D; Damm W; Stoll S; Van Gunsteren WF
    J Comput Chem; 2002 Nov; 23(15):1416-29. PubMed ID: 12370944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields.
    Vitalini F; Noé F; Keller BG
    Data Brief; 2016 Jun; 7():582-90. PubMed ID: 27054161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of different force fields in force probe simulations.
    Schlesier T; Diezemann G
    J Phys Chem B; 2013 Feb; 117(6):1862-71. PubMed ID: 23311640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.