BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26606551)

  • 1. Compressed Sensing 3-Dimensional Time-of-Flight Magnetic Resonance Angiography for Cerebral Aneurysms: Optimization and Evaluation.
    Fushimi Y; Fujimoto K; Okada T; Yamamoto A; Tanaka T; Kikuchi T; Miyamoto S; Togashi K
    Invest Radiol; 2016 Apr; 51(4):228-35. PubMed ID: 26606551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of time-of-flight MR angiography with sparse undersampling and iterative reconstruction for cerebral aneurysms.
    Fushimi Y; Okada T; Kikuchi T; Yamamoto A; Okada T; Yamamoto T; Schmidt M; Yoshida K; Miyamoto S; Togashi K
    NMR Biomed; 2017 Nov; 30(11):. PubMed ID: 28796397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Follow-Up Assessment of Intracranial Aneurysms Treated with Endovascular Coiling: Comparison of Compressed Sensing and Parallel Imaging Time-of-Flight Magnetic Resonance Angiography.
    Vornetti G; Bartiromo F; Toni F; Dall'Olio M; Cirillo M; Speier P; Princiotta C; Schmidt M; Tonon C; Zacà D; Lodi R; Cirillo L
    Tomography; 2022 Jun; 8(3):1608-1617. PubMed ID: 35736881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Follow-up of coiled cerebral aneurysms: comparison of three-dimensional time-of-flight magnetic resonance angiography at 3 tesla with three-dimensional time-of-flight magnetic resonance angiography and contrast-enhanced magnetic resonance angiography at 1.5 Tesla.
    Anzalone N; Scomazzoni F; Cirillo M; Cadioli M; Iadanza A; Kirchin MA; Scotti G
    Invest Radiol; 2008 Aug; 43(8):559-67. PubMed ID: 18648255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly undersampled contrast-enhanced MRA with iterative reconstruction: Integration in a clinical setting.
    Stalder AF; Schmidt M; Quick HH; Schlamann M; Maderwald S; Schmitt P; Wang Q; Nadar MS; Zenge MO
    Magn Reson Med; 2015 Dec; 74(6):1652-60. PubMed ID: 25522299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effectiveness of 3T time-of-flight magnetic resonance angiography for follow-up evaluations after the stent-assisted coil embolization of cerebral aneurysms.
    Cho WS; Kim SS; Lee SJ; Kim SH
    Acta Radiol; 2014 Jun; 55(5):604-13. PubMed ID: 24003259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging.
    Zijlstra F; Viergever MA; Seevinck PR
    Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated whole-heart MR angiography using a variable-density poisson-disc undersampling pattern and compressed sensing reconstruction.
    Moghari MH; Uecker M; Roujol S; Sabbagh M; Geva T; Powell AJ
    Magn Reson Med; 2018 Feb; 79(2):761-769. PubMed ID: 28497620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azygous anterior cerebral artery and associated aneurysms: detection and identification using 3-dimensional time-of-flight magnetic resonance angiography.
    Wan-Yin S; Ming-Hua L; Bin-Xian G; Yong-Dong L; Hua-Qiao T
    J Neuroimaging; 2014; 24(1):18-22. PubMed ID: 23163794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.
    Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L
    J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated noncontrast-enhanced pulmonary vein MRA with distributed compressed sensing.
    Akçakaya M; Hu P; Chuang ML; Hauser TH; Ngo LH; Manning WJ; Tarokh V; Nezafat R
    J Magn Reson Imaging; 2011 May; 33(5):1248-55. PubMed ID: 21509886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A follow-up study of autosomal dominant polycystic kidney disease with intracranial aneurysms using 3.0 T three-dimensional time-of-flight magnetic resonance angiography.
    Jiang T; Wang P; Qian Y; Zheng X; Xiao L; Yu S; Liu S
    Eur J Radiol; 2013 Nov; 82(11):1840-5. PubMed ID: 23466029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of undersampling parameters for 3D intracranial compressed sensing MR angiography at 7 T.
    de Buck MHS; Jezzard P; Hess AT
    Magn Reson Med; 2022 Aug; 88(2):880-889. PubMed ID: 35344622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive imaging after stent-assisted coiling of intracranial aneurysms: comparison of 3-T magnetic resonance imaging and 64-row multidetector computed tomography--a pilot study.
    Kovács A; Möhlenbruch M; Hadizadeh DR; Seifert M; Greschus S; Clusmann H; Willinek WA; Flacke S; Urbach H
    J Comput Assist Tomogr; 2011; 35(5):573-82. PubMed ID: 21926852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.