These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 26606613)
1. Assessing Excited State Methods by Adiabatic Excitation Energies. Send R; Kühn M; Furche F J Chem Theory Comput; 2011 Aug; 7(8):2376-86. PubMed ID: 26606613 [TBL] [Abstract][Full Text] [Related]
2. Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data. Winter NO; Graf NK; Leutwyler S; Hättig C Phys Chem Chem Phys; 2013 May; 15(18):6623-30. PubMed ID: 23111753 [TBL] [Abstract][Full Text] [Related]
3. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. Petrenko T; Kossmann S; Neese F J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101 [TBL] [Abstract][Full Text] [Related]
4. How method-dependent are calculated differences between vertical, adiabatic, and 0-0 excitation energies? Fang C; Oruganti B; Durbeej B J Phys Chem A; 2014 Jun; 118(23):4157-71. PubMed ID: 24848558 [TBL] [Abstract][Full Text] [Related]
5. Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals. Goerigk L; Moellmann J; Grimme S Phys Chem Chem Phys; 2009 Jun; 11(22):4611-20. PubMed ID: 19475182 [TBL] [Abstract][Full Text] [Related]
6. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems. Herbert JM; Zhang X; Morrison AF; Liu J Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899 [TBL] [Abstract][Full Text] [Related]
7. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms. Xu X; Yang KR; Truhlar DG J Chem Theory Comput; 2014 May; 10(5):2070-84. PubMed ID: 26580534 [TBL] [Abstract][Full Text] [Related]
8. Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. Isegawa M; Peverati R; Truhlar DG J Chem Phys; 2012 Dec; 137(24):244104. PubMed ID: 23277925 [TBL] [Abstract][Full Text] [Related]
9. Computational tests of quantum chemical models for excited and ionized states of molecules with phosphorus and sulfur atoms. Hahn DK; RaghuVeer K; Ortiz JV J Phys Chem A; 2014 May; 118(19):3514-24. PubMed ID: 24779512 [TBL] [Abstract][Full Text] [Related]
10. Quantum Chemical Investigation of Light-Activated Spin State Change in Pyrene Coupled to Oxoverdazyl Radical Center. Sadhukhan T; Datta A; Datta SN J Phys Chem A; 2015 Sep; 119(35):9414-24. PubMed ID: 26291476 [TBL] [Abstract][Full Text] [Related]
11. Benchmarking the Approximate Second-Order Coupled-Cluster Method on Biochromophores. Send R; Kaila VR; Sundholm D J Chem Theory Comput; 2011 Aug; 7(8):2473-84. PubMed ID: 26606621 [TBL] [Abstract][Full Text] [Related]
12. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. Jacquemin D; Perpète EA; Ciofini I; Adamo C; Valero R; Zhao Y; Truhlar DG J Chem Theory Comput; 2010 Jul; 6(7):2071-85. PubMed ID: 26615935 [TBL] [Abstract][Full Text] [Related]
13. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations. Palmer MH; Vrønning Hoffmann S; Jones NC; Coreno M; de Simone M; Grazioli C J Chem Phys; 2018 Jun; 148(21):214304. PubMed ID: 29884032 [TBL] [Abstract][Full Text] [Related]
14. Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. Rappoport D; Furche F J Chem Phys; 2005 Feb; 122(6):064105. PubMed ID: 15740365 [TBL] [Abstract][Full Text] [Related]
15. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. Furche F; Perdew JP J Chem Phys; 2006 Jan; 124(4):044103. PubMed ID: 16460145 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments. Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950 [TBL] [Abstract][Full Text] [Related]
17. How does LCDFT compare to SAC-CI for the treatment of valence and Rydberg excited states of organic compounds? Alipour M J Phys Chem A; 2014 Mar; 118(9):1741-7. PubMed ID: 24559047 [TBL] [Abstract][Full Text] [Related]
18. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. Isegawa M; Truhlar DG J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking the performance of time-dependent density functional methods. Leang SS; Zahariev F; Gordon MS J Chem Phys; 2012 Mar; 136(10):104101. PubMed ID: 22423822 [TBL] [Abstract][Full Text] [Related]
20. Accurate excitation energies of molecules and oligomers from a semilocal density functional. Tian G; Mo Y; Tao J J Chem Phys; 2017 Jun; 146(23):234102. PubMed ID: 28641440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]