These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 26606898)
1. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers. Zhao D; Duan H; Yu S; Zhang Y; He J; Quan X; Tao P; Shang W; Wu J; Song C; Deng T Sci Rep; 2015 Nov; 5():17276. PubMed ID: 26606898 [TBL] [Abstract][Full Text] [Related]
2. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Yu S; Zhang Y; Duan H; Liu Y; Quan X; Tao P; Shang W; Wu J; Song C; Deng T Sci Rep; 2015 Sep; 5():13600. PubMed ID: 26337561 [TBL] [Abstract][Full Text] [Related]
3. Patterned Surfaces for Solar-Driven Interfacial Evaporation. Luo Y; Fu B; Shen Q; Hao W; Xu J; Min M; Liu Y; An S; Song C; Tao P; Wu J; Shang W; Deng T ACS Appl Mater Interfaces; 2019 Feb; 11(7):7584-7590. PubMed ID: 30688056 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Zhang L; Xing J; Wen X; Chai J; Wang S; Xiong Q Nanoscale; 2017 Sep; 9(35):12843-12849. PubMed ID: 28832043 [TBL] [Abstract][Full Text] [Related]
5. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells. Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990 [TBL] [Abstract][Full Text] [Related]
6. Highly absorbing solar cells--a survey of plasmonic nanostructures. Dunbar RB; Pfadler T; Schmidt-Mende L Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666 [TBL] [Abstract][Full Text] [Related]
7. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. Chang C; Yang C; Liu Y; Tao P; Song C; Shang W; Wu J; Deng T ACS Appl Mater Interfaces; 2016 Sep; 8(35):23412-8. PubMed ID: 27537862 [TBL] [Abstract][Full Text] [Related]
9. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Wang Z; Liu Y; Tao P; Shen Q; Yi N; Zhang F; Liu Q; Song C; Zhang D; Shang W; Deng T Small; 2014 Aug; 10(16):3234-9. PubMed ID: 24821378 [TBL] [Abstract][Full Text] [Related]
10. Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. Lukianova-Hleb EY; Lapotko DO Nano Lett; 2009 May; 9(5):2160-6. PubMed ID: 19374436 [TBL] [Abstract][Full Text] [Related]
11. Modeling light trapping in nanostructured solar cells. Ferry VE; Polman A; Atwater HA ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201 [TBL] [Abstract][Full Text] [Related]
12. Applications of light scattering in dye-sensitized solar cells. Zhang Q; Myers D; Lan J; Jenekhe SA; Cao G Phys Chem Chem Phys; 2012 Nov; 14(43):14982-98. PubMed ID: 23042288 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled plasmonic nanoparticles on vertically aligned carbon nanotube electrodes via thermal evaporation. Kim Y; Lee S; Lee K; Shim S; Kim JY; Lee HW; Choi D ACS Appl Mater Interfaces; 2014 Nov; 6(22):20423-9. PubMed ID: 25384110 [TBL] [Abstract][Full Text] [Related]
14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
15. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface. Liu Y; Chen J; Guo D; Cao M; Jiang L ACS Appl Mater Interfaces; 2015 Jun; 7(24):13645-52. PubMed ID: 26027770 [TBL] [Abstract][Full Text] [Related]
16. Floating rGO-based black membranes for solar driven sterilization. Zhang Y; Zhao D; Yu F; Yang C; Lou J; Liu Y; Chen Y; Wang Z; Tao P; Shang W; Wu J; Song C; Deng T Nanoscale; 2017 Dec; 9(48):19384-19389. PubMed ID: 29206253 [TBL] [Abstract][Full Text] [Related]
17. Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process. Utgenannt A; Maspero R; Fortini A; Turner R; Florescu M; Jeynes C; Kanaras AG; Muskens OL; Sear RP; Keddie JL ACS Nano; 2016 Feb; 10(2):2232-42. PubMed ID: 26767891 [TBL] [Abstract][Full Text] [Related]
18. Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black. Loeb S; Li C; Kim JH Environ Sci Technol; 2018 Jan; 52(1):205-213. PubMed ID: 29240431 [TBL] [Abstract][Full Text] [Related]
19. Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer. Wang JY; Tsai FJ; Huang JJ; Chen CY; Li N; Kiang YW; Yang CC Opt Express; 2010 Feb; 18(3):2682-94. PubMed ID: 20174098 [TBL] [Abstract][Full Text] [Related]
20. Light scattering by an infinite circular cylinder immersed in an absorbing medium. Sun W; Loeb NG; Lin B Appl Opt; 2005 Apr; 44(12):2338-42. PubMed ID: 15861840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]