These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 26606940)
1. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. Wei S; Roessler BC; Icyuz M; Chauvet S; Tao B; Hartman JL; Kirk KL FASEB J; 2016 Mar; 30(3):1247-62. PubMed ID: 26606940 [TBL] [Abstract][Full Text] [Related]
2. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
3. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W; Bernard K; Li G; Kirk KL J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710 [TBL] [Abstract][Full Text] [Related]
4. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. Okeyo G; Wang W; Wei S; Kirk KL J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589 [TBL] [Abstract][Full Text] [Related]
5. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. Wang W; Roessler BC; Kirk KL J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805 [TBL] [Abstract][Full Text] [Related]
6. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation. Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716 [TBL] [Abstract][Full Text] [Related]
7. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
8. G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations. Wang W; Fu L; Liu Z; Wen H; Rab A; Hong JS; Kirk KL; Rowe SM Am J Physiol Lung Cell Mol Physiol; 2020 Nov; 319(5):L770-L785. PubMed ID: 32877225 [TBL] [Abstract][Full Text] [Related]
9. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels. Wang F; Zeltwanger S; Hu S; Hwang TC J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148 [TBL] [Abstract][Full Text] [Related]
10. The intact CFTR protein mediates ATPase rather than adenylate kinase activity. Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200 [TBL] [Abstract][Full Text] [Related]
11. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl Chen JH; Xu W; Sheppard DN J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763 [TBL] [Abstract][Full Text] [Related]
12. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
13. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Zwick M; Esposito C; Hellstern M; Seelig A J Biol Chem; 2016 Jul; 291(28):14483-98. PubMed ID: 27226582 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
15. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022 [TBL] [Abstract][Full Text] [Related]
16. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
17. An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR. Randak C; Welsh MJ Cell; 2003 Dec; 115(7):837-50. PubMed ID: 14697202 [TBL] [Abstract][Full Text] [Related]
18. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating. Fu J; Ji HL; Naren AP; Kirk KL J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681 [TBL] [Abstract][Full Text] [Related]
19. ATPase activity of the cystic fibrosis transmembrane conductance regulator. Li C; Ramjeesingh M; Wang W; Garami E; Hewryk M; Lee D; Rommens JM; Galley K; Bear CE J Biol Chem; 1996 Nov; 271(45):28463-8. PubMed ID: 8910473 [TBL] [Abstract][Full Text] [Related]