These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26607001)

  • 1. Lamination Speeds the Functional Development of Visual Circuits.
    Nikolaou N; Meyer MP
    Neuron; 2015 Dec; 88(5):999-1013. PubMed ID: 26607001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum.
    Robles E; Filosa A; Baier H
    J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system.
    Antinucci P; Nikolaou N; Meyer MP; Hindges R
    Cell Rep; 2013 Nov; 5(3):582-92. PubMed ID: 24183672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction selectivity in the visual system of the zebrafish larva.
    Gebhardt C; Baier H; Del Bene F
    Front Neural Circuits; 2013; 7():111. PubMed ID: 23785314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric functional maps of visual inputs to the tectum.
    Nikolaou N; Lowe AS; Walker AS; Abbas F; Hunter PR; Thompson ID; Meyer MP
    Neuron; 2012 Oct; 76(2):317-324. PubMed ID: 23083735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Three-Layer Network Model of Direction Selective Circuits in the Optic Tectum.
    Abbas F; Triplett MA; Goodhill GJ; Meyer MP
    Front Neural Circuits; 2017; 11():88. PubMed ID: 29209178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EphrinB2a in the zebrafish retinotectal system.
    Wagle M; Grunewald B; Subburaju S; Barzaghi C; Le Guyader S; Chan J; Jesuthasan S
    J Neurobiol; 2004 Apr; 59(1):57-65. PubMed ID: 15007827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity.
    Hunter PR; Lowe AS; Thompson ID; Meyer MP
    J Neurosci; 2013 Aug; 33(35):13940-5. PubMed ID: 23986231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish mutations affecting retinotectal axon pathfinding.
    Karlstrom RO; Trowe T; Klostermann S; Baier H; Brand M; Crawford AD; Grunewald B; Haffter P; Hoffmann H; Meyer SU; Müller BK; Richter S; van Eeden FJ; Nüsslein-Volhard C; Bonhoeffer F
    Development; 1996 Dec; 123():427-38. PubMed ID: 9007260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Putative targets of direction-selective retinal ganglion cells in the tectum opticum of cyprinid fish.
    Damjanović I; Maximov PV; Aliper AT; Zaichikova AA; Gačić Z; Maximova EM
    Brain Res; 2019 Apr; 1708():20-26. PubMed ID: 30527677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP
    J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant.
    Matsuda N; Mishina M
    Development; 2004 May; 131(9):1913-25. PubMed ID: 15056614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum.
    Meek J
    Brain Res; 1983 Dec; 287(3):247-97. PubMed ID: 6362772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map.
    Gnuegge L; Schmid S; Neuhauss SC
    J Neurosci; 2001 May; 21(10):3542-8. PubMed ID: 11331383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meis1 specifies positional information in the retina and tectum to organize the zebrafish visual system.
    Erickson T; French CR; Waskiewicz AJ
    Neural Dev; 2010 Sep; 5():22. PubMed ID: 20809932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets.
    Yamagata M; Sanes JR
    Development; 1995 Nov; 121(11):3763-76. PubMed ID: 8582286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. astray, a zebrafish roundabout homolog required for retinal axon guidance.
    Fricke C; Lee JS; Geiger-Rudolph S; Bonhoeffer F; Chien CB
    Science; 2001 Apr; 292(5516):507-10. PubMed ID: 11313496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
    Cogen J; Cohen-Cory S
    J Neurobiol; 2000 Nov; 45(2):120-33. PubMed ID: 11018773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.