BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26607027)

  • 21. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles.
    Tian Y; Tatsuma T
    J Am Chem Soc; 2005 May; 127(20):7632-7. PubMed ID: 15898815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial States in Au/Reduced TiO
    Henrotte O; Kment Š; Naldoni A
    J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(32):15861-15870. PubMed ID: 37609381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterojunction synergies in titania-supported gold photocatalysts: implications for solar hydrogen production.
    Jovic V; Smith KE; Idriss H; Waterhouse GI
    ChemSusChem; 2015 Aug; 8(15):2551-9. PubMed ID: 26105614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation.
    Tsukamoto D; Shiraishi Y; Sugano Y; Ichikawa S; Tanaka S; Hirai T
    J Am Chem Soc; 2012 Apr; 134(14):6309-15. PubMed ID: 22440019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts.
    Ren S; Wang B; Zhang H; Ding P; Wang Q
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4066-74. PubMed ID: 25671518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.
    Sakamoto T; Nagao D; Noba M; Ishii H; Konno M
    Langmuir; 2014 Jun; 30(24):7244-50. PubMed ID: 24878432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocatalytic Activity of Au/TiO2 Photocatalysts for H2 Evolution: Role of the Au Nanoparticles as a Function of the Irradiation Wavelength.
    Serra M; Albero J; García H
    Chemphyschem; 2015 Jun; 16(9):1842-5. PubMed ID: 25908252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of Ag-Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts.
    Wang Q; Wang X; Zhang M; Li G; Gao S; Li M; Zhang Y
    J Colloid Interface Sci; 2016 Feb; 463():308-16. PubMed ID: 26555961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2.
    Hamal DB; Klabunde KJ
    J Colloid Interface Sci; 2007 Jul; 311(2):514-22. PubMed ID: 17418857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid removal and decomposition of gaseous acetaldehyde by the thermo- and photo-catalysis of gold nanoparticle-loaded anatase titanium(IV) oxide.
    Nikawa T; Naya S; Tada H
    J Colloid Interface Sci; 2015 Oct; 456():161-5. PubMed ID: 26122796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals.
    Bu TA; Hao YC; Gao WY; Su X; Chen LW; Zhang N; Yin AX
    Nanoscale; 2019 May; 11(20):10072-10079. PubMed ID: 31089635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the surface structure of nitrogen-doped TiO2 nanofibres--an effective method to enhance photocatalytic activities of visible-light-driven green synthesis and degradation.
    Zheng Z; Zhao J; Yuan Y; Liu H; Yang D; Sarina S; Zhang H; Waclawika ER; Zhu H
    Chemistry; 2013 Apr; 19(18):5731-41. PubMed ID: 23463719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A very simple method for the preparation of Au/TiO
    Tanaka A; Hashimoto K; Kominami H
    Chem Commun (Camb); 2017 Apr; 53(35):4759-4762. PubMed ID: 28417118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid Removal and Mineralization of Bisphenol A by Heterosupramolecular Plasmonic Photocatalyst Consisting of Gold Nanoparticle-Loaded Titanium(IV) Oxide and Surfactant Admicelle.
    Naya SI; Yamauchi J; Okubo T; Tada H
    Langmuir; 2017 Oct; 33(40):10468-10472. PubMed ID: 28915054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis.
    Dutta S; Sahoo R; Ray C; Sarkar S; Jana J; Negishi Y; Pal T
    Dalton Trans; 2015 Jan; 44(1):193-201. PubMed ID: 25369862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ synthesis of TiO2/SnO(x)-Au ternary heterostructures effectively promoting visible-light photocatalysis.
    Dong Z; Wu M; Wu J; Ma Y; Ma Z
    Dalton Trans; 2015 Jul; 44(26):11901-10. PubMed ID: 26061220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities.
    Tanaka A; Ogino A; Iwaki M; Hashimoto K; Ohnuma A; Amano F; Ohtani B; Kominami H
    Langmuir; 2012 Sep; 28(36):13105-11. PubMed ID: 22900610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting.
    Zhan Z; An J; Zhang H; Hansen RV; Zheng L
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1139-44. PubMed ID: 24392835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment.
    Anandan S; Ashokkumar M
    Ultrason Sonochem; 2009 Mar; 16(3):316-20. PubMed ID: 19028129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.