BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26607036)

  • 21. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.
    Yang Y; Lyubartsev AP; Korolev N; Nordenskiöld L
    Biophys J; 2009 Mar; 96(6):2082-94. PubMed ID: 19289035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations.
    Chang L; Takada S
    Sci Rep; 2016 Oct; 6():34441. PubMed ID: 27698366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of acetylated histones H3 and H4 and their assembly into nucleosomes.
    Marvin KW; Yau P; Bradbury EM
    J Biol Chem; 1990 Nov; 265(32):19839-47. PubMed ID: 2123192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic effects of H3 and H4 nucleosome tails on structure and dynamics of a lesion-containing DNA: Binding of a displaced lesion partner base to the H3 tail for GG-NER recognition.
    Cai Y; Fu I; Geacintov NE; Zhang Y; Broyde S
    DNA Repair (Amst); 2018 May; 65():73-78. PubMed ID: 29631253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase.
    Verreault A; Kaufman PD; Kobayashi R; Stillman B
    Curr Biol; 1998 Jan; 8(2):96-108. PubMed ID: 9427644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of DNA length and H4 acetylation on the thermal stability of reconstituted nucleosome particles.
    Siino JS; Yau PM; Imai BS; Gatewood JM; Bradbury EM
    Biochem Biophys Res Commun; 2003 Mar; 302(4):885-91. PubMed ID: 12646255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast.
    Ma XJ; Wu J; Altheim BA; Schultz MC; Grunstein M
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6693-8. PubMed ID: 9618474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation.
    Yang D; Arya G
    Phys Chem Chem Phys; 2011 Feb; 13(7):2911-21. PubMed ID: 21157623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The NuA4 Core Complex Acetylates Nucleosomal Histone H4 through a Double Recognition Mechanism.
    Xu P; Li C; Chen Z; Jiang S; Fan S; Wang J; Dai J; Zhu P; Chen Z
    Mol Cell; 2016 Sep; 63(6):965-75. PubMed ID: 27594449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylation increases the alpha-helical content of the histone tails of the nucleosome.
    Wang X; Moore SC; Laszckzak M; Ausió J
    J Biol Chem; 2000 Nov; 275(45):35013-20. PubMed ID: 10938086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleosome recognition by the Piccolo NuA4 histone acetyltransferase complex.
    Berndsen CE; Selleck W; McBryant SJ; Hansen JC; Tan S; Denu JM
    Biochemistry; 2007 Feb; 46(8):2091-9. PubMed ID: 17274630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histone H4-K16 acetylation controls chromatin structure and protein interactions.
    Shogren-Knaak M; Ishii H; Sun JM; Pazin MJ; Davie JR; Peterson CL
    Science; 2006 Feb; 311(5762):844-7. PubMed ID: 16469925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein.
    Xu L; Cheng A; Huang M; Zhang J; Jiang Y; Wang C; Li F; Bao H; Gao J; Wang N; Liu J; Wu J; Wong CCL; Ruan K
    FEBS J; 2017 Oct; 284(20):3422-3436. PubMed ID: 28815970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study.
    Gansen A; Tóth K; Schwarz N; Langowski J
    Nucleic Acids Res; 2015 Feb; 43(3):1433-43. PubMed ID: 25589544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase.
    Zhang W; Bone JR; Edmondson DG; Turner BM; Roth SY
    EMBO J; 1998 Jun; 17(11):3155-67. PubMed ID: 9606197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system.
    Zheng C; Hayes JJ
    J Biol Chem; 2003 Jun; 278(26):24217-24. PubMed ID: 12697747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4.
    Klinker H; Mueller-Planitz F; Yang R; Forné I; Liu CF; Nordenskiöld L; Becker PB
    PLoS One; 2014; 9(2):e88411. PubMed ID: 24516652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.
    Chatterjee N; North JA; Dechassa ML; Manohar M; Prasad R; Luger K; Ottesen JJ; Poirier MG; Bartholomew B
    Mol Cell Biol; 2015 Dec; 35(23):4083-92. PubMed ID: 26416878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of histone N-terminal tails and their acetylation in nucleosome dynamics.
    Morales V; Richard-Foy H
    Mol Cell Biol; 2000 Oct; 20(19):7230-7. PubMed ID: 10982840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells.
    Chang L; Loranger SS; Mizzen C; Ernst SG; Allis CD; Annunziato AT
    Biochemistry; 1997 Jan; 36(3):469-80. PubMed ID: 9012662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.