These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26607173)

  • 1. Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage.
    Kay VL; Rickards CA
    Physiol Rep; 2015 Nov; 3(11):. PubMed ID: 26607173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of protocols for simulating hemorrhage in humans: step versus ramp lower body negative pressure.
    Rosenberg AJ; Kay VL; Anderson GK; Sprick JD; Rickards CA
    J Appl Physiol (1985); 2021 Feb; 130(2):380-389. PubMed ID: 33211600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
    Kay VL; Rickards CA
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R375-83. PubMed ID: 26676249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
    Rickards CA; Johnson BD; Harvey RE; Convertino VA; Joyner MJ; Barnes JN
    J Appl Physiol (1985); 2015 Sep; 119(6):677-85. PubMed ID: 26139213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of acute central hypovolemia on cerebral hemodynamics: does sex matter?
    Rosenberg AJ; Kay VL; Anderson GK; Luu ML; Barnes HJ; Sprick JD; Alvarado HB; Rickards CA
    J Appl Physiol (1985); 2021 Jun; 130(6):1786-1797. PubMed ID: 33914663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral oxygenation and regional cerebral perfusion responses with resistance breathing during central hypovolemia.
    Kay VL; Sprick JD; Rickards CA
    Am J Physiol Regul Integr Comp Physiol; 2017 Aug; 313(2):R132-R139. PubMed ID: 28539354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity.
    Rickards CA; Ryan KL; Cooke WH; Convertino VA
    J Appl Physiol (1985); 2011 Oct; 111(4):1048-58. PubMed ID: 21799129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral Blood Flow Velocity During Combined Lower Body Negative Pressure and Cognitive Stress.
    Durocher JJ; Carter JR; Cooke WH; Young AH; Harwood MH
    Aerosp Med Hum Perform; 2015 Aug; 86(8):688-92. PubMed ID: 26387891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking central hypovolemia with ecg in humans: cautions for the use of heart period variability in patient monitoring.
    Ryan KL; Rickards CA; Ludwig DA; Convertino VA
    Shock; 2010 Jun; 33(6):583-9. PubMed ID: 19997052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations of end-tidal CO2 as an early indicator of central hypovolemia in humans.
    McManus JG; Ryan KL; Morton MJ; Rickards CA; Cooke WH; Convertino VA
    Prehosp Emerg Care; 2008; 12(2):199-205. PubMed ID: 18379917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans.
    Poh PY; Gagnon D; Romero SA; Convertino VA; Adams-Huet B; Crandall CG
    Shock; 2016 Sep; 46(3 Suppl 1):42-9. PubMed ID: 27224744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of lower body negative pressure as an experimental model of hemorrhage.
    Hinojosa-Laborde C; Shade RE; Muniz GW; Bauer C; Goei KA; Pidcoke HF; Chung KK; Cap AP; Convertino VA
    J Appl Physiol (1985); 2014 Feb; 116(4):406-15. PubMed ID: 24356525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex comparisons in muscle sympathetic nerve activity and arterial pressure oscillations during progressive central hypovolemia.
    Carter R; Hinojosa-Laborde C; Convertino VA
    Physiol Rep; 2015 Jun; 3(6):. PubMed ID: 26109186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers.
    van Genderen ME; Bartels SA; Lima A; Bezemer R; Ince C; Bakker J; van Bommel J
    Anesth Analg; 2013 Feb; 116(2):351-6. PubMed ID: 23302972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuated cardiac baroreflex in men with presyncope evoked by lower body negative pressure.
    Wijeysundera DN; Butler GC; Ando S; Pollard M; Picton P; Floras JS
    Clin Sci (Lond); 2001 Mar; 100(3):303-9. PubMed ID: 11222117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute fasting reduces tolerance to progressive central hypovolemia in humans.
    Gonzalez JE; Cooke WH
    J Appl Physiol (1985); 2024 Feb; 136(2):362-371. PubMed ID: 38126086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses.
    Johnson BD; van Helmond N; Curry TB; van Buskirk CM; Convertino VA; Joyner MJ
    J Appl Physiol (1985); 2014 Jul; 117(2):131-41. PubMed ID: 24876357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular and autonomic responses to lower body negative pressure: do not explain gender differences in orthostatic tolerance.
    Franke WD; Johnson CP; Steinkamp JA; Wang R; Halliwill JR
    Clin Auton Res; 2003 Feb; 13(1):36-44. PubMed ID: 12664246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial pulse pressure and its association with reduced stroke volume during progressive central hypovolemia.
    Convertino VA; Cooke WH; Holcomb JB
    J Trauma; 2006 Sep; 61(3):629-34. PubMed ID: 16966999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.