BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 26607633)

  • 1. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I.
    Seminotti B; Amaral AU; Ribeiro RT; Rodrigues MDN; Colín-González AL; Leipnitz G; Santamaría A; Wajner M
    Mol Neurobiol; 2016 Nov; 53(9):6459-6475. PubMed ID: 26607633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.
    Rodrigues MDN; Seminotti B; Zanatta Â; de Mello Gonçalves A; Bellaver B; Amaral AU; Quincozes-Santos A; Goodman SI; Woontner M; Souza DO; Wajner M
    Mol Neurobiol; 2017 Aug; 54(6):4795-4805. PubMed ID: 27510504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: a role for oxidative stress in GA I neuropathology.
    Seminotti B; Ribeiro RT; Amaral AU; da Rosa MS; Pereira CC; Leipnitz G; Koeller DM; Goodman S; Woontner M; Wajner M
    J Neurol Sci; 2014 Sep; 344(1-2):105-13. PubMed ID: 24996493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Guerreiro G; Amaral AU; Ribeiro RT; Faverzani J; Groehs AC; Sitta A; Deon M; Wajner M; Vargas CR
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2420-2427. PubMed ID: 31181292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice.
    Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Vargas CR; Leipnitz G; Santamaría A; Souza DO; Wajner M
    Neurotox Res; 2018 Apr; 33(3):593-606. PubMed ID: 29235064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Amaral AU; Cecatto C; Seminotti B; Ribeiro CA; Lagranha VL; Pereira CC; de Oliveira FH; de Souza DG; Goodman S; Woontner M; Wajner M
    Brain Res; 2015 Sep; 1620():116-29. PubMed ID: 25998543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology.
    Rodrigues MD; Seminotti B; Amaral AU; Leipnitz G; Goodman SI; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2015 Dec; 359(1-2):133-40. PubMed ID: 26671102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbance of Mitochondrial Dynamics, Endoplasmic Reticulum-Mitochondria Crosstalk, Redox Homeostasis, and Inflammatory Response in the Brain of Glutaryl-CoA Dehydrogenase-Deficient Mice: Neuroprotective Effects of Bezafibrate.
    Seminotti B; Brondani M; Ribeiro RT; Leipnitz G; Wajner M
    Mol Neurobiol; 2022 Aug; 59(8):4839-4853. PubMed ID: 35639256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.
    Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I.
    Amaral AU; Seminotti B; Cecatto C; Fernandes CG; Busanello EN; Zanatta Â; Kist LW; Bogo MR; de Souza DO; Woontner M; Goodman S; Koeller DM; Wajner M
    Mol Genet Metab; 2012 Nov; 107(3):375-82. PubMed ID: 22999741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute lysine overload provokes marked striatum injury involving oxidative stress signaling pathways in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Leipnitz G; Souza DO; Wajner M
    Neurochem Int; 2019 Oct; 129():104467. PubMed ID: 31121257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.
    Seminotti B; Amaral AU; da Rosa MS; Fernandes CG; Leipnitz G; Olivera-Bravo S; Barbeito L; Ribeiro CA; de Souza DO; Woontner M; Goodman SI; Koeller DM; Wajner M
    Mol Genet Metab; 2013 Jan; 108(1):30-9. PubMed ID: 23218171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I.
    Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L
    Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdh
    Seminotti B; Amaral AU; Grings M; Ribeiro CAJ; Leipnitz G; Wajner M
    Neurotox Res; 2020 Dec; 38(4):1024-1036. PubMed ID: 33001399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh-/- mice: possible implications for the neuropathology of glutaric acidemia type I.
    Lagranha VL; Matte U; de Carvalho TG; Seminotti B; Pereira CC; Koeller DM; Woontner M; Goodman SI; de Souza DO; Wajner M
    PLoS One; 2014; 9(3):e90477. PubMed ID: 24594605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.
    Colín-González AL; Paz-Loyola AL; Serratos I; Seminotti B; Ribeiro CA; Leipnitz G; Souza DO; Wajner M; Santamaría A
    Neuroscience; 2015 Nov; 308():64-74. PubMed ID: 26343296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration.
    Seminotti B; da Rosa MS; Fernandes CG; Amaral AU; Braga LM; Leipnitz G; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 May; 106(1):31-8. PubMed ID: 22445450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Cecatto C; Seminotti B; Zanatta Â; Fernandes CG; Busanello EN; Braga LM; Ribeiro CA; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 Sep; 107(1-2):81-6. PubMed ID: 22578804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I.
    Barbieri Caus L; Pasquetti MV; Seminotti B; Woontner M; Wajner M; Calcagnotto ME
    J Neurosci Res; 2022 Apr; 100(4):992-1007. PubMed ID: 34713466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery.
    Gonzalez Melo M; Remacle N; Cudré-Cung HP; Roux C; Poms M; Cudalbu C; Barroso M; Gersting SW; Feichtinger RG; Mayr JA; Costanzo M; Caterino M; Ruoppolo M; Rüfenacht V; Häberle J; Braissant O; Ballhausen D
    Mol Genet Metab; 2021 Jun; 133(2):157-181. PubMed ID: 33965309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.