BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26607741)

  • 21. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment.
    Ferrari SM; Fallahi P; Galdiero MR; Ruffilli I; Elia G; Ragusa F; Paparo SR; Patrizio A; Mazzi V; Varricchi G; Marone G; Antonelli A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer.
    Yang M; Lu J; Zhang G; Wang Y; He M; Xu Q; Xu C; Liu H
    J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33452206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. γδ T Cells in Tumor Microenvironment.
    Imbert C; Olive D
    Adv Exp Med Biol; 2020; 1273():91-104. PubMed ID: 33119877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies.
    Waibl Polania J; Lerner EC; Wilkinson DS; Hoyt-Miggelbrink A; Fecci PE
    Front Immunol; 2021; 12():777073. PubMed ID: 34868044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Malignant pleural mesothelioma immune microenvironment and checkpoint expression: correlation with clinical-pathological features and intratumor heterogeneity over time.
    Pasello G; Zago G; Lunardi F; Urso L; Kern I; Vlacic G; Grosso F; Mencoboni M; Ceresoli GL; Schiavon M; Pezzuto F; Pavan A; Vuljan SE; Del Bianco P; Conte P; Rea F; Calabrese F
    Ann Oncol; 2018 May; 29(5):1258-1265. PubMed ID: 29514216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical significance of tumor-infiltrating lymphocytes in breast cancer.
    Stanton SE; Disis ML
    J Immunother Cancer; 2016; 4():59. PubMed ID: 27777769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infiltration by Intratumor and Stromal CD8 and CD68 in Cervical Cancer.
    Dimitrova P; Vasileva-Slaveva M; Shivarov V; Hasan I; Yordanov A
    Medicina (Kaunas); 2023 Apr; 59(4):. PubMed ID: 37109686
    [No Abstract]   [Full Text] [Related]  

  • 29. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer.
    Missiaen R; Mazzone M; Bergers G
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):107-116. PubMed ID: 29935312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intratumoral CXCL13
    Dai S; Zeng H; Liu Z; Jin K; Jiang W; Wang Z; Lin Z; Xiong Y; Wang J; Chang Y; Bai Q; Xia Y; Liu L; Zhu Y; Xu L; Qu Y; Guo J; Xu J
    J Immunother Cancer; 2021 Feb; 9(2):. PubMed ID: 33589528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of Basic Immunology for Clinical Investigators.
    Stephen B; Hajjar J
    Adv Exp Med Biol; 2017; 995():1-31. PubMed ID: 28321810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naïve tumors with immune checkpoint inhibitors.
    Tosi A; Parisatto B; Menegaldo A; Spinato G; Guido M; Del Mistro A; Bussani R; Zanconati F; Tofanelli M; Tirelli G; Boscolo-Rizzo P; Rosato A
    J Exp Clin Cancer Res; 2022 Sep; 41(1):279. PubMed ID: 36123711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity.
    Singh A; Anang V; Kumari K; Kottarath SK; Verma C
    Prog Mol Biol Transl Sci; 2023; 194():269-310. PubMed ID: 36631195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interleukin-4 induced 1-mediated resistance to an immune checkpoint inhibitor through suppression of CD8
    Hirose S; Mashima T; Yuan X; Yamashita M; Kitano S; Torii S; Migita T; Seimiya H
    Cancer Sci; 2024 Mar; 115(3):791-803. PubMed ID: 38258342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions.
    Mariotti FR; Quatrini L; Munari E; Vacca P; Moretta L
    Front Immunol; 2019; 10():910. PubMed ID: 31105707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and verification of PTPN3 as a novel biomarker in predicting cancer prognosis, immunity, and immunotherapeutic efficacy.
    Zhou Z; Lin Z; Wang M; Wang L; Ji Y; Yang J; Yang Y; Zhu G; Liu T
    Eur J Med Res; 2024 Jan; 29(1):12. PubMed ID: 38173048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer.
    Zohair B; Chraa D; Rezouki I; Benthami H; Razzouki I; Elkarroumi M; Olive D; Karkouri M; Badou A
    Front Immunol; 2023; 14():1201632. PubMed ID: 37753093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive analysis of 33 human cancers reveals clinical implications and immunotherapeutic value of the solute carrier family 35 member A2.
    Xu S; Chen X; Fang J; Chu H; Fang S; Zeng L; Ma H; Zhang T; Chen Y; Wang T; Zhang X; Shen T; Zheng Y; Xu D; Lu Z; Pan Y; Liu Y
    Front Immunol; 2023; 14():1155182. PubMed ID: 37275857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.