BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26607770)

  • 1. Polymer chain flexibility-induced differences in fetuin A adsorption and its implications on cell attachment and proliferation.
    Vyner MC; Amsden BG
    Acta Biomater; 2016 Feb; 31():89-98. PubMed ID: 26607770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of elastomer chain flexibility on protein adsorption.
    Vyner MC; Liu L; Sheardown HD; Amsden BG
    Biomaterials; 2013 Dec; 34(37):9287-94. PubMed ID: 24034504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface.
    Iwasaki Y; Sawada S; Nakabayashi N; Khang G; Lee HB; Ishihara K
    Biomaterials; 1999 Nov; 20(22):2185-91. PubMed ID: 10555087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetuin-A adsorption to tunable polydimethylsiloxane and subsequent macrophage response.
    Miller C; Sask KN
    J Biomed Mater Res A; 2023 Aug; 111(8):1096-1109. PubMed ID: 36592125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.
    Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL
    J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers.
    Ishihara K; Ishikawa E; Iwasaki Y; Nakabayashi N
    J Biomater Sci Polym Ed; 1999; 10(10):1047-61. PubMed ID: 10591131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The correlation between fibronectin adsorption and fibroblast cell behaviors on chitosan/poly(ϵ-caprolactone) blend films.
    Min X; Tang M; Jiao Y; Zhou C
    J Biomater Sci Polym Ed; 2012; 23(11):1421-35. PubMed ID: 21762547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization and in vitro degradation of a biodegradable elastomer.
    Younes HM; Bravo-Grimaldo E; Amsden BG
    Biomaterials; 2004 Oct; 25(22):5261-9. PubMed ID: 15110477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinational Effects of Polymer Viscoelasticity and Immobilized Peptides on Cell Adhesion to Cell-selective Scaffolds.
    Kurimoto R; Kanie K; Uto K; Kawai S; Hara M; Nagano S; Narita Y; Honda H; Naito M; Ebara M; Kato R
    Anal Sci; 2016; 32(11):1195-1202. PubMed ID: 27829625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel surfactant-based immobilization method for varying substrate-bound fibronectin.
    Webb K; Caldwell KD; Tresco PA
    J Biomed Mater Res; 2001 Mar; 54(4):509-18. PubMed ID: 11426595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minute changes in composition of polymer substrates produce amplified differences in cell adhesion and motility via optimal ligand conditioning.
    Bae YH; Johnson PA; Florek CA; Kohn J; Moghe PV
    Acta Biomater; 2006 Sep; 2(5):473-82. PubMed ID: 16793356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion.
    Hasan A; Saxena V; Pandey LM
    Langmuir; 2018 Mar; 34(11):3494-3506. PubMed ID: 29489380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface eroding, liquid injectable polymers based on 5-ethylene ketal ε-caprolactone.
    Babasola OI; Amsden BG
    Biomacromolecules; 2011 Oct; 12(10):3423-31. PubMed ID: 21902176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate).
    Oughlis S; Lessim S; Changotade S; Bollotte F; Poirier F; Helary G; Lataillade JJ; Migonney V; Lutomski D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Dec; 879(31):3681-7. PubMed ID: 22036657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strength of the protein-material interaction determines cell fate.
    González-García C; Cantini M; Ballester-Beltrán J; Altankov G; Salmerón-Sánchez M
    Acta Biomater; 2018 Sep; 77():74-84. PubMed ID: 30006313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lotus-leaf-like topography predominates over adsorbed ECM proteins in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) surface/cell interactions.
    Zheng J; Li D; Yuan L; Liu X; Chen H
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5882-7. PubMed ID: 23721174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering.
    Zhu Y; Chian KS; Chan-Park MB; Mhaisalkar PS; Ratner BD
    Biomaterials; 2006 Jan; 27(1):68-78. PubMed ID: 16005962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films modified with polyvinylpyrrolidone and behavior of MC3T3-E1 osteoblasts cultured on the blended films.
    Xi J; Kong L; Gao Y; Gong Y; Zhao N; Zhang X
    J Biomater Sci Polym Ed; 2005; 16(11):1395-408. PubMed ID: 16370240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscopic analyses of cell-adhesive protein adsorption on poly(2-methoxyethyl acrylate) surfaces.
    Nishida K; Baba K; Murakami D; Tanaka M
    Biomater Sci; 2022 May; 10(11):2953-2963. PubMed ID: 35485613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.