These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 26608057)
1. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes. Mascagni F; Barghini E; Giordani T; Rieseberg LH; Cavallini A; Natali L Genome Biol Evol; 2015 Nov; 7(12):3368-82. PubMed ID: 26608057 [TBL] [Abstract][Full Text] [Related]
2. Specific LTR-Retrotransposons Show Copy Number Variations between Wild and Cultivated Sunflowers. Mascagni F; Vangelisti A; Giordani T; Cavallini A; Natali L Genes (Basel); 2018 Aug; 9(9):. PubMed ID: 30158460 [TBL] [Abstract][Full Text] [Related]
3. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070 [TBL] [Abstract][Full Text] [Related]
4. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data. Tetreault HM; Ungerer MC G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). Mascagni F; Giordani T; Ceccarelli M; Cavallini A; Natali L BMC Genomics; 2017 Aug; 18(1):634. PubMed ID: 28821238 [TBL] [Abstract][Full Text] [Related]
6. Different histories of two highly variable LTR retrotransposons in sunflower species. Mascagni F; Cavallini A; Giordani T; Natali L Gene; 2017 Nov; 634():5-14. PubMed ID: 28867564 [TBL] [Abstract][Full Text] [Related]
7. A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.). Mascagni F; Vangelisti A; Usai G; Giordani T; Cavallini A; Natali L Genetica; 2020 Feb; 148(1):13-23. PubMed ID: 31960179 [TBL] [Abstract][Full Text] [Related]
8. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. Qiu F; Ungerer MC BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730 [TBL] [Abstract][Full Text] [Related]
9. Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Kawakami T; Dhakal P; Katterhenry AN; Heatherington CA; Ungerer MC Genome Biol Evol; 2011; 3():156-67. PubMed ID: 21282712 [TBL] [Abstract][Full Text] [Related]
10. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Vukich M; Schulman AH; Giordani T; Natali L; Kalendar R; Cavallini A Theor Appl Genet; 2009 Oct; 119(6):1027-38. PubMed ID: 19618160 [TBL] [Abstract][Full Text] [Related]
11. HACRE1, a recently inserted copia-like retrotransposon of sunflower (Helianthus annuus L.). Buti M; Giordani T; Vukich M; Gentzbittel L; Pistelli L; Cattonaro F; Morgante M; Cavallini A; Natali L Genome; 2009 Nov; 52(11):904-11. PubMed ID: 19935914 [TBL] [Abstract][Full Text] [Related]
12. Genomic and Transcriptomic Survey Provides New Insight into the Organization and Transposition Activity of Highly Expressed LTR Retrotransposons of Sunflower ( Kirov I; Omarov M; Merkulov P; Dudnikov M; Gvaramiya S; Kolganova E; Komakhin R; Karlov G; Soloviev A Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33297579 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional dynamics of LTR retrotransposons in early generation and ancient sunflower hybrids. Ungerer MC; Kawakami T Genome Biol Evol; 2013; 5(2):329-37. PubMed ID: 23335122 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhizal fungi induce the expression of specific retrotransposons in roots of sunflower (Helianthus annuus L.). Vangelisti A; Mascagni F; Giordani T; Sbrana C; Turrini A; Cavallini A; Giovannetti M; Natali L PLoS One; 2019; 14(2):e0212371. PubMed ID: 30779767 [TBL] [Abstract][Full Text] [Related]
15. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Cavallini A; Natali L; Zuccolo A; Giordani T; Jurman I; Ferrillo V; Vitacolonna N; Sarri V; Cattonaro F; Ceccarelli M; Cionini PG; Morgante M Theor Appl Genet; 2010 Feb; 120(3):491-508. PubMed ID: 19826774 [TBL] [Abstract][Full Text] [Related]
16. The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. Natali L; Cossu RM; Barghini E; Giordani T; Buti M; Mascagni F; Morgante M; Gill N; Kane NC; Rieseberg L; Cavallini A BMC Genomics; 2013 Oct; 14():686. PubMed ID: 24093210 [TBL] [Abstract][Full Text] [Related]
17. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons. Mourier T; Willerslev E BMC Genomics; 2010 Mar; 11():167. PubMed ID: 20226011 [TBL] [Abstract][Full Text] [Related]
18. Sequence variability of a dehydrin gene within Helianthus annuus. Natali L; Giordani T; Cavallini A Theor Appl Genet; 2003 Mar; 106(5):811-8. PubMed ID: 12647054 [TBL] [Abstract][Full Text] [Related]
19. Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). Vukich M; Giordani T; Natali L; Cavallini A BMC Plant Biol; 2009 Dec; 9():150. PubMed ID: 20030800 [TBL] [Abstract][Full Text] [Related]
20. Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions. Buti M; Giordani T; Cattonaro F; Cossu RM; Pistelli L; Vukich M; Morgante M; Cavallini A; Natali L Theor Appl Genet; 2011 Sep; 123(5):779-91. PubMed ID: 21647740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]