These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26608228)

  • 21. Polyethylenimine Expanded Graphite Oxide Enables High Sulfur Loading and Long-Term Stability of Lithium-Sulfur Batteries.
    Huang X; Zhang K; Luo B; Hu H; Sun D; Wang S; Hu Y; Lin T; Jia Z; Wang L
    Small; 2019 Jul; 15(29):e1804578. PubMed ID: 30680923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li-S Battery Electrodes.
    Liu B; Bo R; Taheri M; Di Bernardo I; Motta N; Chen H; Tsuzuki T; Yu G; Tricoli A
    Nano Lett; 2019 Jul; 19(7):4391-4399. PubMed ID: 31246030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enabling High-Energy-Density Cathode for Lithium-Sulfur Batteries.
    Lu D; Li Q; Liu J; Zheng J; Wang Y; Ferrara S; Xiao J; Zhang JG; Liu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23094-23102. PubMed ID: 29877693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium Batteries with Nearly Maximum Metal Storage.
    Raji AO; Villegas Salvatierra R; Kim ND; Fan X; Li Y; Silva GAL; Sha J; Tour JM
    ACS Nano; 2017 Jun; 11(6):6362-6369. PubMed ID: 28511004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hollow Ni
    Yao Y; Chang C; Sun H; Guo D; Li R; Pu X; Zhai J
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25267-25277. PubMed ID: 35613059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage.
    Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y
    ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.
    Liu W; Jiang J; Yang KR; Mi Y; Kumaravadivel P; Zhong Y; Fan Q; Weng Z; Wu Z; Cha JJ; Zhou H; Batista VS; Brudvig GW; Wang H
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3578-3583. PubMed ID: 28320950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexpected Effect of Electrode Architecture on High-Performance Lithium-Sulfur Batteries.
    Xiao P; Sun L; Liao D; Agboola PO; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33269-33275. PubMed ID: 30199222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
    Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J
    Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries.
    Fan CY; Liu SY; Li HH; Wang HF; Wang HC; Wu XL; Sun HZ; Zhang JP
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28689-28699. PubMed ID: 27731632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries.
    Luo WB; Chou SL; Wang JZ; Zhai YC; Liu HK
    Small; 2015 Jun; 11(23):2817-24. PubMed ID: 25688745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries.
    Gao J; Abruña HD
    J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity.
    Zhong J; Wang T; Wang L; Peng L; Fu S; Zhang M; Cao J; Xu X; Liang J; Fei H; Duan X; Lu B; Wang Y; Zhu J; Duan X
    Nanomicro Lett; 2022 Jan; 14(1):50. PubMed ID: 35076763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Interfacial Electronic Engineering in Binary Sulfiphilic Cobalt Boride Heterostructure Nanosheets for Upgrading Energy Density and Longevity of Lithium-Sulfur Batteries.
    Li Z; Li P; Meng X; Lin Z; Wang R
    Adv Mater; 2021 Oct; 33(42):e2102338. PubMed ID: 34480377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries.
    Zhou J; Chen M; Wang T; Li S; Zhang Q; Zhang M; Xu H; Liu J; Liang J; Zhu J; Duan X
    iScience; 2020 Mar; 23(3):100919. PubMed ID: 32114378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.