BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26608299)

  • 1. Protocol for a Steady-State FRET Assay in Cancer Chemoprevention.
    Schaap MC; GuimarĂ£es AM; Wilderspin AF; Wells G
    Methods Mol Biol; 2016; 1379():165-79. PubMed ID: 26608299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a steady-state FRET-based assay to identify inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Schaap M; Hancock R; Wilderspin A; Wells G
    Protein Sci; 2013 Dec; 22(12):1812-9. PubMed ID: 24130096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay for the Inhibition of Keap1-Nrf2 Protein-Protein Interaction.
    Lee S; Abed DA; Beamer LJ; Hu L
    SLAS Discov; 2021 Jan; 26(1):100-112. PubMed ID: 32564647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug screening assay based on the interaction of intact Keap1 and Nrf2 proteins in cancer cells.
    Zhou B; Zhang X; Wang G; Barbour KW; Berger FG; Wang Q
    Bioorg Med Chem; 2019 Jan; 27(1):92-99. PubMed ID: 30473361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).
    Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC
    Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide and small molecule inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Wells G
    Biochem Soc Trans; 2015 Aug; 43(4):674-9. PubMed ID: 26551711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of fluorescently labeled Nrf2 peptide probes and the development of a fluorescence polarization assay for the discovery of inhibitors of Keap1-Nrf2 interaction.
    Inoyama D; Chen Y; Huang X; Beamer LJ; Kong AN; Hu L
    J Biomol Screen; 2012 Apr; 17(4):435-47. PubMed ID: 22156223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Changes in Keap1-Nrf2 Protein Complex Conformation in Individual Cells by FLIM-FRET.
    Dikovskaya D; Dinkova-Kostova AT
    Curr Protoc Toxicol; 2020 Sep; 85(1):e96. PubMed ID: 32786061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2).
    Tian W; Rojo de la Vega M; Schmidlin CJ; Ooi A; Zhang DD
    J Biol Chem; 2018 Feb; 293(6):2029-2040. PubMed ID: 29255090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling.
    Lo SC; Li X; Henzl MT; Beamer LJ; Hannink M
    EMBO J; 2006 Aug; 25(15):3605-17. PubMed ID: 16888629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein-Protein Interaction.
    Zhang Y; Shi Z; Zhou Y; Xiao Q; Wang H; Peng Y
    J Med Chem; 2020 Aug; 63(15):7986-8002. PubMed ID: 32233486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.
    Hayes JD; McMahon M; Chowdhry S; Dinkova-Kostova AT
    Antioxid Redox Signal; 2010 Dec; 13(11):1713-48. PubMed ID: 20446772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis.
    Dikovskaya D; Appleton PL; Bento-Pereira C; Dinkova-Kostova AT
    Chem Res Toxicol; 2019 Mar; 32(3):500-512. PubMed ID: 30793592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. USP15 negatively regulates Nrf2 through deubiquitination of Keap1.
    Villeneuve NF; Tian W; Wu T; Sun Z; Lau A; Chapman E; Fang D; Zhang DD
    Mol Cell; 2013 Jul; 51(1):68-79. PubMed ID: 23727018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1.
    Fukutomi T; Takagi K; Mizushima T; Ohuchi N; Yamamoto M
    Mol Cell Biol; 2014 Mar; 34(5):832-46. PubMed ID: 24366543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baicalein modulates Nrf2/Keap1 system in both Keap1-dependent and Keap1-independent mechanisms.
    Qin S; Deng F; Wu W; Jiang L; Yamashiro T; Yano S; Hou DX
    Arch Biochem Biophys; 2014 Oct; 559():53-61. PubMed ID: 24704364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Hancock R; Bertrand HC; Tsujita T; Naz S; El-Bakry A; Laoruchupong J; Hayes JD; Wells G
    Free Radic Biol Med; 2012 Jan; 52(2):444-51. PubMed ID: 22107959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination.
    Hast BE; Cloer EW; Goldfarb D; Li H; Siesser PF; Yan F; Walter V; Zheng N; Hayes DN; Major MB
    Cancer Res; 2014 Feb; 74(3):808-17. PubMed ID: 24322982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.