These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 26608300)

  • 1. 3D Tumor Models and Time-Lapse Analysis by Multidimensional Microscopy.
    Scholz D; Itasaki N
    Methods Mol Biol; 2016; 1379():181-8. PubMed ID: 26608300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities.
    Lan SF; Starly B
    Toxicol Appl Pharmacol; 2011 Oct; 256(1):62-72. PubMed ID: 21839104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of transendothelial migration using three-dimensional confocal microscopy.
    Cain RJ; d'Água BB; Ridley AJ
    Methods Mol Biol; 2011; 769():167-90. PubMed ID: 21748676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring neuron and astrocyte interactions with a 3D cell culture system.
    Phillips JB
    Methods Mol Biol; 2014; 1162():113-24. PubMed ID: 24838962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian filtering approach to incorporate 2D/3D time-lapse confocal images for tracking angiogenic sprouting cells interacting with the gel matrix.
    Ong LL; Dauwels J; Ang MH; Asada HH
    Med Image Anal; 2014 Jan; 18(1):211-27. PubMed ID: 24239653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of in ovo electroporation and time-lapse imaging to study migrational events in chicken embryos.
    Masyuk M; Morosan-Puopolo G; Brand-Saberi B; Theiss C
    Dev Dyn; 2014 May; 243(5):690-8. PubMed ID: 24375914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-lapse imaging of dendritic spines in vitro.
    Verkuyl JM; Matus A
    Nat Protoc; 2006; 1(5):2399-405. PubMed ID: 17406483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free nondestructive imaging of vascular network structure in 3D culture.
    Sokic S; Larson JC; Larkin SM; Papavasiliou G; Holmes TJ; Brey EM
    Microvasc Res; 2014 Mar; 92():72-8. PubMed ID: 24423617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An operational concept for long-term cinemicrography of cells in mono- and co-culture under highly controlled conditions--the SlideObserver.
    Billecke N; Raschzok N; Rohn S; Morgul MH; Schwartlander R; Mogl M; Wollersheim S; Schmitt KR; Sauer IM
    J Biotechnol; 2012 May; 159(1-2):83-9. PubMed ID: 22326445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model.
    Majety M; Pradel LP; Gies M; Ries CH
    PLoS One; 2015; 10(6):e0127948. PubMed ID: 26053043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Approach to Study Melanoma Invasion and Crosstalk with Lymphatic Endothelial Cell Spheroids in 3D Using Immunofluorescence.
    Alve S; Gramolelli S; Ojala PM
    Methods Mol Biol; 2021; 2265():141-154. PubMed ID: 33704712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems.
    Woods E; Courtney J; Scholz D; Hall WW; Gautier VW
    J Microsc; 2014 Dec; 256(3):197-207. PubMed ID: 25186063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Immune-Tumor Cell Interactions Using a 3D Co-culture Model.
    Augustine TN
    Methods Mol Biol; 2020; 2184():103-110. PubMed ID: 32808221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live cell imaging of chemotactic dendritic cell migration in explanted mouse ear preparations.
    Weber M; Sixt M
    Methods Mol Biol; 2013; 1013():215-26. PubMed ID: 23625502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds.
    Hofmann A; Ritz U; Verrier S; Eglin D; Alini M; Fuchs S; Kirkpatrick CJ; Rommens PM
    Biomaterials; 2008 Nov; 29(31):4217-26. PubMed ID: 18692894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focus-drift correction in time-lapse confocal imaging.
    Kreft M; Stenovec M; Zorec R
    Ann N Y Acad Sci; 2005 Jun; 1048():321-30. PubMed ID: 16154944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic real-time three-dimensional cell tracking by fluorescence microscopy.
    Rabut G; Ellenberg J
    J Microsc; 2004 Nov; 216(Pt 2):131-7. PubMed ID: 15516224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system.
    Enoki R; Ono D; Hasan MT; Honma S; Honma K
    J Neurosci Methods; 2012 May; 207(1):72-9. PubMed ID: 22480987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.
    Wöllert T; Langford GM
    Methods Mol Biol; 2016; 1365():3-23. PubMed ID: 26498777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques.
    Ding P; Wu H; Fang L; Wu M; Liu R
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):1-10. PubMed ID: 24678629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.