These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26608336)

  • 41. Biaxial mechanical behavior of bovine saphenous venous valve leaflets.
    Lu J; Huang HS
    J Mech Behav Biomed Mater; 2018 Jan; 77():594-599. PubMed ID: 29096125
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heart valve tissue engineering.
    Vesely I
    Circ Res; 2005 Oct; 97(8):743-55. PubMed ID: 16224074
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical modeling of the maturation process for tissue-engineered implants: Application to biohybrid heart valves.
    Sesa M; Holthusen H; Lamm L; Böhm C; Brepols T; Jockenhövel S; Reese S
    Comput Biol Med; 2023 Dec; 167():107623. PubMed ID: 37922603
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heart valve tissue engineering: how far is the bedside from the bench?
    Sanz-Garcia A; Oliver-de-la-Cruz J; Mirabet V; Gandía C; Villagrasa A; Sodupe E; Escobedo-Lucea C
    Expert Rev Mol Med; 2015 Sep; 17():e16. PubMed ID: 26399177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Collagen Matrix Remodeling in Stented Pulmonary Arteries after Transapical Heart Valve Replacement.
    Ghazanfari S; Driessen-Mol A; Hoerstrup SP; Baaijens FP; Bouten CV
    Cells Tissues Organs; 2016; 201(3):159-69. PubMed ID: 26989895
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Future prospects in the tissue engineering of heart valves: a focus on the role of stem cells.
    Albert BJ; Butcher JT
    Expert Opin Biol Ther; 2023; 23(6):553-564. PubMed ID: 37171790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
    Salinas M; Ramaswamy S
    J Biomech; 2014 Nov; 47(14):3517-23. PubMed ID: 25262874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cells for tissue engineering of cardiac valves.
    Jana S; Tranquillo RT; Lerman A
    J Tissue Eng Regen Med; 2016 Oct; 10(10):804-824. PubMed ID: 25712485
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation.
    Brugmans MM; Driessen-Mol A; Rubbens MP; Cox MA; Baaijens FP
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E289-301. PubMed ID: 23677869
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time strain mapping via biaxial stretching in heart valve tissues.
    Huang HY; Huang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6653-6. PubMed ID: 23367455
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PGA (polyglycolic acid)-P4HB (poly-4-hydroxybutyrate)-Based Bioengineered Valves in the Rat Aortic Circulation.
    Książek AA; Mitchell KJ; Cesarovic N; Schwarzwald CC; Hoerstrup SP; Weber B
    J Heart Valve Dis; 2016 May; 25(3):380-388. PubMed ID: 27989051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Virtual experiments of heart valve tissues.
    Huang S; Huang HY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6645-8. PubMed ID: 23367453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
    Stella JA; Liao J; Sacks MS
    J Biomech; 2007; 40(14):3169-77. PubMed ID: 17570376
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: six-month in vivo functionality and matrix remodelling in sheep.
    Schmitt B; Spriestersbach H; O H-Icí D; Radtke T; Bartosch M; Peters H; Sigler M; Frese L; Dijkman PE; Baaijens FP; Hoerstrup SP; Berger F
    EuroIntervention; 2016 May; 12(1):62-70. PubMed ID: 27173864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells.
    Sodian R; Lueders C; Kraemer L; Kuebler W; Shakibaei M; Reichart B; Daebritz S; Hetzer R
    Ann Thorac Surg; 2006 Jun; 81(6):2207-16. PubMed ID: 16731156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing?
    Parvin Nejad S; Blaser MC; Santerre JP; Caldarone CA; Simmons CA
    Adv Drug Deliv Rev; 2016 Jan; 96():161-75. PubMed ID: 26555371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomatrix/polymer composite material for heart valve tissue engineering.
    Stamm C; Khosravi A; Grabow N; Schmohl K; Treckmann N; Drechsel A; Nan M; Schmitz KP; Haubold A; Steinhoff G
    Ann Thorac Surg; 2004 Dec; 78(6):2084-92; discussion 2092-3. PubMed ID: 15561041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue-engineered heart valves develop native-like collagen fiber architecture.
    Cox MA; Kortsmit J; Driessen N; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2010 May; 16(5):1527-37. PubMed ID: 20001249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.