BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 26608661)

  • 21. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis.
    Yan F; Powell DR; Curtis DJ; Wong NC
    Genome Biol; 2020 Feb; 21(1):22. PubMed ID: 32014034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Batf Pioneers the Reorganization of Chromatin in Developing Effector T Cells via Ets1-Dependent Recruitment of Ctcf.
    Pham D; Moseley CE; Gao M; Savic D; Winstead CJ; Sun M; Kee BL; Myers RM; Weaver CT; Hatton RD
    Cell Rep; 2019 Oct; 29(5):1203-1220.e7. PubMed ID: 31665634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Wide Transcription Factor Binding in Leaves from C
    Burgess SJ; Reyna-Llorens I; Stevenson SR; Singh P; Jaeger K; Hibberd JM
    Plant Cell; 2019 Oct; 31(10):2297-2314. PubMed ID: 31427470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions.
    Beytebiere JR; Trott AJ; Greenwell BJ; Osborne CA; Vitet H; Spence J; Yoo SH; Chen Z; Takahashi JS; Ghaffari N; Menet JS
    Genes Dev; 2019 Mar; 33(5-6):294-309. PubMed ID: 30804225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model.
    Wang C; Zhang S
    BMC Genomics; 2018 Dec; 19(Suppl 10):903. PubMed ID: 30598107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BiFET: sequencing Bias-free transcription factor Footprint Enrichment Test.
    Youn A; Marquez EJ; Lawlor N; Stitzel ML; Ucar D
    Nucleic Acids Res; 2019 Jan; 47(2):e11. PubMed ID: 30428075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid.
    Liu Q; Van Bortle K; Zhang Y; Zhao MT; Zhang JZ; Geller BS; Gruber JJ; Jiang C; Wu JC; Snyder MP
    Sci Rep; 2018 Aug; 8(1):12960. PubMed ID: 30154523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways.
    Piragyte I; Clapes T; Polyzou A; Klein Geltink RI; Lefkopoulos S; Yin N; Cauchy P; Curtis JD; Klaeylé L; Langa X; Beckmann CCA; Wlodarski MW; Müller P; Van Essen D; Rambold A; Kapp FG; Mione M; Buescher JM; Pearce EL; Polyzos A; Trompouki E
    Nat Commun; 2018 Aug; 9(1):3090. PubMed ID: 30082823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions.
    Martins AL; Walavalkar NM; Anderson WD; Zang C; Guertin MJ
    Nucleic Acids Res; 2018 Jan; 46(2):e9. PubMed ID: 29126307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bringing numerous methods for expression and promoter analysis to a public cloud computing service.
    Polanski K; Gao B; Mason SA; Brown P; Ott S; Denby KJ; Wild DL
    Bioinformatics; 2018 Mar; 34(5):884-886. PubMed ID: 29126246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation.
    Van Bortle K; Phanstiel DH; Snyder MP
    Genome Biol; 2017 Sep; 18(1):180. PubMed ID: 28931413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.
    Schwessinger R; Suciu MC; McGowan SJ; Telenius J; Taylor S; Higgs DR; Hughes JR
    Genome Res; 2017 Oct; 27(10):1730-1742. PubMed ID: 28904015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development.
    Phanstiel DH; Van Bortle K; Spacek D; Hess GT; Shamim MS; Machol I; Love MI; Aiden EL; Bassik MC; Snyder MP
    Mol Cell; 2017 Sep; 67(6):1037-1048.e6. PubMed ID: 28890333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data.
    Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S
    Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic footprinting.
    Vierstra J; Stamatoyannopoulos JA
    Nat Methods; 2016 Mar; 13(3):213-21. PubMed ID: 26914205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A practical guide for DNase-seq data analysis: from data management to common applications.
    Liu Y; Fu L; Kaufmann K; Chen D; Chen M
    Brief Bioinform; 2019 Sep; 20(5):1865-1877. PubMed ID: 30010713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wellington-bootstrap: differential DNase-seq footprinting identifies cell-type determining transcription factors.
    Piper J; Assi SA; Cauchy P; Ladroue C; Cockerill PN; Bonifer C; Ott S
    BMC Genomics; 2015 Nov; 16():1000. PubMed ID: 26608661
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.