These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26609077)

  • 41. Coevolution between marine Aeromonas and phages reveals temporal trade-off patterns of phage resistance and host population fitness.
    Xu Z; Ding Z; Shi L; Xie Y; Zhang Y; Wang Z; Liu Q
    ISME J; 2023 Dec; 17(12):2200-2209. PubMed ID: 37814126
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multifaceted Impacts of Bacteriophages in the Plant Microbiome.
    Koskella B; Taylor TB
    Annu Rev Phytopathol; 2018 Aug; 56():361-380. PubMed ID: 29958076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High parasite diversity accelerates host adaptation and diversification.
    Betts A; Gray C; Zelek M; MacLean RC; King KC
    Science; 2018 May; 360(6391):907-911. PubMed ID: 29798882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome properties and the limits of adaptation in bacteriophages.
    Bull JJ; Badgett MR; Springman R; Molineux IJ
    Evolution; 2004 Apr; 58(4):692-701. PubMed ID: 15154545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions.
    Nanda AM; Thormann K; Frunzke J
    J Bacteriol; 2015 Feb; 197(3):410-9. PubMed ID: 25404701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parasite genetic distance and local adaptation in co-evolving bacteria-bacteriophage populations.
    Scanlan PD; Hall AR; Buckling A
    Mol Ecol; 2017 Apr; 26(7):1747-1755. PubMed ID: 27775190
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteria-phage antagonistic coevolution in soil.
    Gómez P; Buckling A
    Science; 2011 Apr; 332(6025):106-9. PubMed ID: 21454789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus.
    Paez-Espino D; Sharon I; Morovic W; Stahl B; Thomas BC; Barrangou R; Banfield JF
    mBio; 2015 Apr; 6(2):. PubMed ID: 25900652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.
    Wendling CC; Piecyk A; Refardt D; Chibani C; Hertel R; Liesegang H; Bunk B; Overmann J; Roth O
    BMC Evol Biol; 2017 Apr; 17(1):98. PubMed ID: 28399796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs.
    Wang X; Wei Z; Li M; Wang X; Shan A; Mei X; Jousset A; Shen Q; Xu Y; Friman VP
    Evolution; 2017 Mar; 71(3):733-746. PubMed ID: 27925169
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antagonistic coevolution with parasites increases the cost of host deleterious mutations.
    Buckling A; Wei Y; Massey RC; Brockhurst MA; Hochberg ME
    Proc Biol Sci; 2006 Jan; 273(1582):45-9. PubMed ID: 16519233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Competition between transposable elements and mutator genes in bacteria.
    Fehér T; Bogos B; Méhi O; Fekete G; Csörgo B; Kovács K; Pósfai G; Papp B; Hurst LD; Pál C
    Mol Biol Evol; 2012 Oct; 29(10):3153-9. PubMed ID: 22527906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trading-off and trading-up in the world of bacteria-phage evolution.
    Burmeister AR; Turner PE
    Curr Biol; 2020 Oct; 30(19):R1120-R1124. PubMed ID: 33022253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multistep diversification in spatiotemporal bacterial-phage coevolution.
    Shaer Tamar E; Kishony R
    Nat Commun; 2022 Dec; 13(1):7971. PubMed ID: 36577749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations.
    Shaver AC; Dombrowski PG; Sweeney JY; Treis T; Zappala RM; Sniegowski PD
    Genetics; 2002 Oct; 162(2):557-66. PubMed ID: 12399371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Competition between lysogenic and sensitive bacteria is determined by the fitness costs of the different emerging phage-resistance strategies.
    Rendueles O; de Sousa JAM; Rocha EPC
    Elife; 2023 Mar; 12():. PubMed ID: 36975200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacteriophage host range and bacterial resistance.
    Hyman P; Abedon ST
    Adv Appl Microbiol; 2010; 70():217-48. PubMed ID: 20359459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients.
    Zhang QG
    Evol Appl; 2014 Mar; 7(3):394-402. PubMed ID: 24665341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phage mutations in response to CRISPR diversification in a bacterial population.
    Sun CL; Barrangou R; Thomas BC; Horvath P; Fremaux C; Banfield JF
    Environ Microbiol; 2013 Feb; 15(2):463-70. PubMed ID: 23057534
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput mapping of the phage resistance landscape in E. coli.
    Mutalik VK; Adler BA; Rishi HS; Piya D; Zhong C; Koskella B; Kutter EM; Calendar R; Novichkov PS; Price MN; Deutschbauer AM; Arkin AP
    PLoS Biol; 2020 Oct; 18(10):e3000877. PubMed ID: 33048924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.