These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2660909)

  • 1. Structure, function and distribution of soluble bacterial redox proteins.
    Meyer TE; Cusanovich MA
    Biochim Biophys Acta; 1989 Jun; 975(1):1-28. PubMed ID: 2660909
    [No Abstract]   [Full Text] [Related]  

  • 2. Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanisms of electron transfer proteins.
    Meyer TE; Przysiecki CT; Watkins JA; Bhattacharyya A; Simondsen RP; Cusanovich MA; Tollin G
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6740-4. PubMed ID: 6580615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial photosynthesis.
    Parson WW
    Annu Rev Microbiol; 1974; 28(0):41-59. PubMed ID: 4611333
    [No Abstract]   [Full Text] [Related]  

  • 4. [Characteristics of the structure of the electron transport chain in bacterial photosynthesis].
    Andreenko TI; Pyt'eva NF; Riznichenko GIu; Rubin LB; Rubin AB
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1973; 118(10):57-62. PubMed ID: 4778014
    [No Abstract]   [Full Text] [Related]  

  • 5. Rate of electron transfer between plastocyanin, cytochrome f, related proteins and artificial redox reagents in solution.
    Wood PM
    Biochim Biophys Acta; 1974 Sep; 357(3):370-9. PubMed ID: 4472275
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of
    Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA
    Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471
    [No Abstract]   [Full Text] [Related]  

  • 7. Light-induced oxidation-reduction reactions of cytochromes in the green sulfur photosynthetic bacterium Prosthecochloris aesturarii.
    Shioi Y; Takamiya K; Nishimura M
    J Biochem; 1976 Oct; 80(4):811-20. PubMed ID: 1010847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Free oxidation in the respiratory chain as a mechanism of oxidative hydroxylation].
    Maslova GM; Raikhman LM; Skulachev VP
    Usp Sovrem Biol; 1969; 67(3):400-22. PubMed ID: 4310784
    [No Abstract]   [Full Text] [Related]  

  • 9. Microbiology. Feasting on minerals.
    Newman DK
    Science; 2010 Feb; 327(5967):793-4. PubMed ID: 20150475
    [No Abstract]   [Full Text] [Related]  

  • 10. Long-distance electron transport in individual, living cable bacteria.
    Bjerg JT; Boschker HTS; Larsen S; Berry D; Schmid M; Millo D; Tataru P; Meysman FJR; Wagner M; Nielsen LP; Schramm A
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5786-5791. PubMed ID: 29735671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redox properties of the cytochromes of purified complex 3.
    Nelson BD; Gellerfors P
    Biochim Biophys Acta; 1974 Sep; 357(3):358-64. PubMed ID: 4370495
    [No Abstract]   [Full Text] [Related]  

  • 12. The distribution of soluble metallo-redox proteins in purple phototrophic bacteria.
    Bartsch RG
    Biochim Biophys Acta; 1991 May; 1058(1):28-30. PubMed ID: 2043646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fumarate as terminal acceptor of phosphorylative electron transport.
    Kröger A
    Biochim Biophys Acta; 1978 Oct; 505(2):129-45. PubMed ID: 363147
    [No Abstract]   [Full Text] [Related]  

  • 14. Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer.
    Edwards MJ; White GF; Norman M; Tome-Fernandez A; Ainsworth E; Shi L; Fredrickson JK; Zachara JM; Butt JN; Richardson DJ; Clarke TA
    Sci Rep; 2015 Jul; 5():11677. PubMed ID: 26126857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the interaction of photoactive bacteriochlorophyll with the primary electron acceptor in the reaction centre of Ectothiorhodospira shaposhnikovii.
    Kononenko AA; Lukashev EP; Rubin AB; Venediktov PS
    Biochim Biophys Acta; 1972 Jul; 275(1):130-3. PubMed ID: 5049016
    [No Abstract]   [Full Text] [Related]  

  • 16. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens.
    Vázquez-Torres A; Bäumler AJ
    Curr Opin Microbiol; 2016 Feb; 29():1-8. PubMed ID: 26426528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electron-transport chains of the obligate methylotroph Methylophilus methylotrophus.
    Cross AB; Anthony C
    Biochem J; 1980 Nov; 192(2):429-39. PubMed ID: 7236221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The mechanisms of singlet-triplet transitions in reduced reaction centers of photosynthesizing bacteria].
    Demidenko AA; Petrov EG
    Mol Biol (Mosk); 1982; 16(6):1203-10. PubMed ID: 6759921
    [No Abstract]   [Full Text] [Related]  

  • 20. On the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes.
    Morgado L; Fernandes AP; Dantas JM; Silva MA; Salgueiro CA
    Biochem Soc Trans; 2012 Dec; 40(6):1295-301. PubMed ID: 23176471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.