These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 26609552)
1. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion. Lin Y; Zhou Q; Li J; Shu J; Qiu Z; Lin Y; Tang D Anal Chem; 2016 Jan; 88(1):1030-8. PubMed ID: 26609552 [TBL] [Abstract][Full Text] [Related]
2. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity. Zhou Q; Lin Y; Xu M; Gao Z; Yang H; Tang D Anal Chem; 2016 Sep; 88(17):8886-92. PubMed ID: 27476555 [TBL] [Abstract][Full Text] [Related]
3. Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate ion. Deng J; Jiang Q; Wang Y; Yang L; Yu P; Mao L Anal Chem; 2013 Oct; 85(19):9409-15. PubMed ID: 24016028 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical strategy for pyrophosphatase detection Based on the peroxidase-like activity of G-quadruplex-Cu Wang Y; Wu Y; Liu W; Chu L; Liao Z; Guo W; Liu GQ; He X; Wang K Talanta; 2018 Feb; 178():491-497. PubMed ID: 29136853 [TBL] [Abstract][Full Text] [Related]
5. Leishmania amazonensis: characterization of an ecto-pyrophosphatase activity. Freitas-Mesquita AL; Fonseca-de-Souza AL; Meyer-Fernandes JR Exp Parasitol; 2014 Feb; 137():8-13. PubMed ID: 24316462 [TBL] [Abstract][Full Text] [Related]
6. A novel fluorescence assay for inorganic pyrophosphatase based on modulated aggregation of graphene quantum dots. Zhu X; Liu J; Peng H; Jiang J; Yu R Analyst; 2016 Jan; 141(1):251-5. PubMed ID: 26581179 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent and Colorimetric Dual-Readout Assay for Inorganic Pyrophosphatase with Cu(2+)-Triggered Oxidation of o-Phenylenediamine. Sun J; Wang B; Zhao X; Li ZJ; Yang X Anal Chem; 2016 Jan; 88(2):1355-61. PubMed ID: 26703206 [TBL] [Abstract][Full Text] [Related]
8. Application of Fenton chemistry in electrochemical determination of pyrophosphatase activity and fluoride. Luo P; Xie Y; He X; He Y; Wang X; Tan L Talanta; 2024 Jul; 274():125943. PubMed ID: 38564823 [TBL] [Abstract][Full Text] [Related]
9. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry. Xu K; Chen Z; Zhou L; Zheng O; Wu X; Guo L; Qiu B; Lin Z; Chen G Anal Chem; 2015 Jan; 87(1):816-20. PubMed ID: 25483562 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric Logic Gate for Pyrophosphate and Pyrophosphatase via Regulating the Catalytic Capability of Horseradish Peroxidase. Chen C; Zhao D; Sun J; Yang X ACS Appl Mater Interfaces; 2016 Nov; 8(43):29529-29535. PubMed ID: 27714993 [TBL] [Abstract][Full Text] [Related]
11. A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu(2+)-ABTS-H2O2 reaction. Zhang L; Li M; Qin Y; Chu Z; Zhao S Analyst; 2014 Dec; 139(23):6298-303. PubMed ID: 25316090 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu Sharma D; Wangoo N; Sharma RK Anal Chim Acta; 2024 May; 1305():342584. PubMed ID: 38677840 [TBL] [Abstract][Full Text] [Related]
13. A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite. Wang H; Wang C; Yang B; Zhai C; Bin D; Zhang K; Yang P; Du Y Analyst; 2015 Feb; 140(4):1291-7. PubMed ID: 25568897 [TBL] [Abstract][Full Text] [Related]
14. Methanococcus jannaschii ORF mj0608 codes for a class C inorganic pyrophosphatase protected by Co(2+) or Mn(2+) ions against fluoride inhibition. Kuhn NJ; Wadeson A; Ward S; Young TW Arch Biochem Biophys; 2000 Jul; 379(2):292-8. PubMed ID: 10898947 [TBL] [Abstract][Full Text] [Related]
15. Assay of inorganic pyrophosphatase activity based on a fluorescence "turn-off" strategy using carbon quantum dots@Cu-MOF nanotubes. Zhang N; Zhao L; He M; Luo P; Tan L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121771. PubMed ID: 36027790 [TBL] [Abstract][Full Text] [Related]
16. Fluoride effects along the reaction pathway of pyrophosphatase: evidence for a second enzyme.pyrophosphate intermediate. Baykov AA; Fabrichniy IP; Pohjanjoki P; Zyryanov AB; Lahti R Biochemistry; 2000 Oct; 39(39):11939-47. PubMed ID: 11009607 [TBL] [Abstract][Full Text] [Related]
17. Method for real-time detection of inorganic pyrophosphatase activity. Eriksson J; Karamohamed S; Nyrén P Anal Biochem; 2001 Jun; 293(1):67-70. PubMed ID: 11373080 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive real-time assay of inorganic pyrophosphatase activity based on the fluorescent gold nanoclusters. Sun J; Yang F; Zhao D; Yang X Anal Chem; 2014 Aug; 86(15):7883-9. PubMed ID: 25030322 [TBL] [Abstract][Full Text] [Related]
19. Cu(II)-Regulated On-Site Assembly of Highly Chemiluminescent Multifunctionalized Carbon Nanotubes for Inorganic Pyrophosphatase Activity Determination. Li F; Liu Y; Li Z; Li Q; Liu X; Cui H ACS Appl Mater Interfaces; 2020 Jan; 12(2):2903-2909. PubMed ID: 31851480 [TBL] [Abstract][Full Text] [Related]
20. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Muthuraj B; Mukherjee S; Chowdhury SR; Patra CR; Iyer PK Biosens Bioelectron; 2017 Mar; 89(Pt 1):636-644. PubMed ID: 26764162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]