These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26609637)

  • 1. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis of a comprehensive dynamic model.
    Dolatshahi S; Fonseca LL; Voit EO
    Mol Biosyst; 2016 Jan; 12(1):23-36. PubMed ID: 26609637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely timed control system regulating glycolysis.
    Dolatshahi S; Fonseca LL; Voit EO
    Mol Biosyst; 2016 Jan; 12(1):37-47. PubMed ID: 26609780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of metabolic pathway systems from different data sources.
    Voit EO; Goel G; Chou IC; Fonseca LL
    IET Syst Biol; 2009 Nov; 3(6):513-22. PubMed ID: 19947777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental determination of control of glycolysis in Lactococcus lactis.
    Koebmann BJ; Andersen HW; Solem C; Jensen PR
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An extended dynamic model of Lactococcus lactis metabolism for mannitol and 2,3-butanediol production.
    Costa RS; Hartmann A; Gaspar P; Neves AR; Vinga S
    Mol Biosyst; 2014 Mar; 10(3):628-39. PubMed ID: 24413179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in lin-log modelling of glycolysis in Lactococcus lactis.
    del Rosario RC; Mendoza E; Voit EO
    IET Syst Biol; 2008 May; 2(3):136-49. PubMed ID: 18537454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach.
    Andersen AZ; Carvalho AL; Neves AR; Santos H; Kummer U; Olsen LF
    Comput Biol Chem; 2009 Feb; 33(1):71-83. PubMed ID: 18829387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments.
    Hoefnagel MH; van der Burgt A; Martens DE; Hugenholtz J; Snoep JL
    Mol Biol Rep; 2002; 29(1-2):157-61. PubMed ID: 12241048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis.
    Neves AR; Ramos A; Nunes MC; Kleerebezem M; Hugenholtz J; de Vos WM; Almeida J; Santos H
    Biotechnol Bioeng; 1999 Jul; 64(2):200-12. PubMed ID: 10397856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study.
    Voit EO; Almeida J; Marino S; Lall R; Goel G; Neves AR; Santos H
    Syst Biol (Stevenage); 2006 Jul; 153(4):286-98. PubMed ID: 16986630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control analysis of the importance of phosphoglycerate enolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403.
    Koebmann B; Solem C; Jensen PR
    Syst Biol (Stevenage); 2006 Sep; 153(5):346-9. PubMed ID: 16986314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.
    Flahaut NA; Wiersma A; van de Bunt B; Martens DE; Schaap PJ; Sijtsma L; Dos Santos VA; de Vos WM
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8729-39. PubMed ID: 23974365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative systems biology approach.
    Levering J; Musters MW; Bekker M; Bellomo D; Fiedler T; de Vos WM; Hugenholtz J; Kreikemeyer B; Kummer U; Teusink B
    FEBS J; 2012 Apr; 279(7):1274-90. PubMed ID: 22325620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture.
    Papagianni M; Avramidis N; Filiousis G
    Microb Cell Fact; 2007 May; 6():16. PubMed ID: 17521452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling multiple experiments using regularized optimization: A case study on bacterial glucose utilization dynamics.
    Hartmann A; Lemos JM; Vinga S
    Comput Biol Med; 2015 Aug; 63():301-9. PubMed ID: 25248561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation.
    Murabito E; Verma M; Bekker M; Bellomo D; Westerhoff HV; Teusink B; Steuer R
    PLoS One; 2014; 9(9):e106453. PubMed ID: 25268481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.