These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26609711)

  • 1. Mobile Block Hessian Approach with Adjoined Blocks: An Efficient Approach for the Calculation of Frequencies in Macromolecules.
    Ghysels A; Van Speybroeck V; Pauwels E; Van Neck D; Brooks BR; Waroquier M
    J Chem Theory Comput; 2009 May; 5(5):1203-15. PubMed ID: 26609711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartesian formulation of the mobile block Hessian approach to vibrational analysis in partially optimized systems.
    Ghysels A; Van Neck D; Waroquier M
    J Chem Phys; 2007 Oct; 127(16):164108. PubMed ID: 17979320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal modes for large molecules with arbitrary link constraints in the mobile block Hessian approach.
    Ghysels A; Van Neck D; Brooks BR; Van Speybroeck V; Waroquier M
    J Chem Phys; 2009 Feb; 130(8):084107. PubMed ID: 19256597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational modes in partially optimized molecular systems.
    Ghysels A; Van Neck D; Van Speybroeck V; Verstraelen T; Waroquier M
    J Chem Phys; 2007 Jun; 126(22):224102. PubMed ID: 17581039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating Reaction Rates with Partial Hessians: Validation of the Mobile Block Hessian Approach.
    Ghysels A; Van Speybroeck V; Verstraelen T; Van Neck D; Waroquier M
    J Chem Theory Comput; 2008 Apr; 4(4):614-25. PubMed ID: 26620936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Calculation of QM/MM Frequencies with the Mobile Block Hessian.
    Ghysels A; Woodcock HL; Larkin JD; Miller BT; Shao Y; Kong J; Neck DV; Speybroeck VV; Waroquier M; Brooks BR
    J Chem Theory Comput; 2011 Feb; 7(2):496-514. PubMed ID: 26596169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building-block approach for determining low-frequency normal modes of macromolecules.
    Tama F; Gadea FX; Marques O; Sanejouand YH
    Proteins; 2000 Oct; 41(1):1-7. PubMed ID: 10944387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies.
    De Moor BA; Ghysels A; Reyniers MF; Van Speybroeck V; Waroquier M; Marin GB
    J Chem Theory Comput; 2011 Apr; 7(4):1090-101. PubMed ID: 26606357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rigid-body Newtonian propagation scheme based on instantaneous decomposition into rotation and translation blocks.
    Essiz S; Coalson RD
    J Chem Phys; 2006 Apr; 124(14):144116. PubMed ID: 16626189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational intensities in the mobile block Hessian approximation.
    Terrett R; Stranger R; Frankcombe T; Pace RJ
    Phys Chem Chem Phys; 2017 Mar; 19(9):6654-6664. PubMed ID: 28210720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FALCON: A method for flexible adaptation of local coordinates of nuclei.
    König C; Hansen MB; Godtliebsen IH; Christiansen O
    J Chem Phys; 2016 Feb; 144(7):074108. PubMed ID: 26896977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal mode analysis using the driven molecular dynamics method. II. An application to biological macromolecules.
    Kaledin M; Brown A; Kaledin AL; Bowman JM
    J Chem Phys; 2004 Sep; 121(12):5646-53. PubMed ID: 15366988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TAMkin: a versatile package for vibrational analysis and chemical kinetics.
    Ghysels A; Verstraelen T; Hemelsoet K; Waroquier M; Van Speybroeck V
    J Chem Inf Model; 2010 Sep; 50(9):1736-50. PubMed ID: 20738140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Block Hessians for the Optimization of Molecular Geometries.
    Pu J; Truhlar DG
    J Chem Theory Comput; 2005 Jan; 1(1):54-60. PubMed ID: 26641115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid anharmonic vibrational corrections derived from partial Hessian analysis.
    Hanson-Heine MW; George MW; Besley NA
    J Chem Phys; 2012 Jun; 136(22):224102. PubMed ID: 22713031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate normal mode analysis based on vibrational subsystem analysis with high accuracy and efficiency.
    Hafner J; Zheng W
    J Chem Phys; 2009 May; 130(19):194111. PubMed ID: 19466825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of various normal mode analysis techniques based on partial Hessians.
    Ghysels A; Van Speybroeck V; Pauwels E; Catak S; Brooks BR; Van Neck D; Waroquier M
    J Comput Chem; 2010 Apr; 31(5):994-1007. PubMed ID: 19813181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of methods for finding saddle points without knowledge of the final states.
    Olsen RA; Kroes GJ; Henkelman G; Arnaldsson A; Jónsson H
    J Chem Phys; 2004 Nov; 121(20):9776-92. PubMed ID: 15549851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Langevin dynamics of molecules with internal rigid fragments in the harmonic regime.
    Essiz SG; Coalson RD
    J Chem Phys; 2007 Sep; 127(10):104109. PubMed ID: 17867739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.