These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26609725)

  • 1. Electro-Optical Parameters for Computation of Nonresonance Raman Scattering Intensities of Peptides.
    Gupta V; Smirnov KS; Bougeard D; Tandon P
    J Chem Theory Comput; 2009 May; 5(5):1369-79. PubMed ID: 26609725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-optical parameters of bond polarizability model for aluminosilicates.
    Smirnov KS; Bougeard D; Tandon P
    J Phys Chem A; 2006 Apr; 110(13):4516-23. PubMed ID: 16571058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the local structure and Raman spectra of CaO-SiO2 binary melts.
    Wu YQ; Jiang GC; You JL; Hou HY; Chen H; Xu KD
    J Chem Phys; 2004 Oct; 121(16):7883-95. PubMed ID: 15485250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine).
    Singh JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():625-40. PubMed ID: 25244296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities.
    Cheeseman JR; Frisch MJ
    J Chem Theory Comput; 2011 Oct; 7(10):3323-34. PubMed ID: 26598166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of structural and vibrational spectroscopic properties of 2-, 3-, 4-nitrobenzenesulfonamide using FT-IR and FT-Raman experimental techniques and DFT quantum chemical calculations.
    Karabacak M; Postalcilar E; Cinar M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):261-70. PubMed ID: 22032973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity-carrying modes in Raman and Raman optical activity spectroscopy.
    Luber S; Reiher M
    Chemphyschem; 2009 Aug; 10(12):2049-57. PubMed ID: 19582732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational spectroscopic properties of hydrogen bonded acetonitrile studied by DFT.
    Alía JM; Edwards HG
    J Phys Chem A; 2005 Sep; 109(35):7977-87. PubMed ID: 16834180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereostructural implication by the differential bond polarizability: ROA intensity study of chiral s 2-amino 1-propanol.
    Wu G; Wang P
    Chirality; 2014 May; 26(5):255-9. PubMed ID: 24639243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H-pyrrolo[3,2-h]quinoline: a benchmark molecule for reliable calculations of vibrational frequencies, IR intensities, and Raman activities.
    Gorski A; Gawinkowski S; Herbich J; Krauss O; Brutschy B; Thummel RP; Waluk J
    J Phys Chem A; 2012 Dec; 116(48):11973-86. PubMed ID: 23134592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical calculation of vibrational spectra of large molecules--Raman and IR spectra for Buckminsterfullerene.
    Neugebauer J; Reiher M; Kind C; Hess BA
    J Comput Chem; 2002 Jul; 23(9):895-910. PubMed ID: 11984851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio and DFT predictions of infrared intensities and Raman activities.
    Zvereva EE; Shagidullin AR; Katsyuba SA
    J Phys Chem A; 2011 Jan; 115(1):63-9. PubMed ID: 21142133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational raman optical activity as a mean for revealing the helicity of oligosilanes: a quantum chemical investigation.
    Liégeois V; Quinet O; Champagne B
    J Chem Phys; 2005 Jun; 122(21):214304. PubMed ID: 15974735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.
    Birke RL; Znamenskiy V; Lombardi JR
    J Chem Phys; 2010 Jun; 132(21):214707. PubMed ID: 20528041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes.
    Rao AM; Richter E; Bandow S; Chase B; Eklund PC; Williams KA; Fang S; Subbaswamy KR; Menon M; Thess A; Smalley RE; Dresselhaus G; Dresselhaus MS
    Science; 1997 Jan; 275(5297):187-91. PubMed ID: 8985007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anharmonic calculation of the structure, vibrational frequencies and intensities of the NH3···trans-HONO complex.
    Bulychev VP; Buturlimova MV; Tokhadze KG
    J Phys Chem A; 2013 Sep; 117(37):9093-8. PubMed ID: 23944642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CH Stretching Region: Computational Modeling of Vibrational Optical Activity.
    Hudecová J; Profant V; Novotná P; Baumruk V; Urbanová M; Bouř P
    J Chem Theory Comput; 2013 Jul; 9(7):3096-108. PubMed ID: 26583989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide.
    Muthu S; Uma Maheswari J; Sundius T
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():307-18. PubMed ID: 23507526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.