These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26609780)

  • 41. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.
    Flahaut NA; Wiersma A; van de Bunt B; Martens DE; Schaap PJ; Sijtsma L; Dos Santos VA; de Vos WM
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8729-39. PubMed ID: 23974365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Challenges in lin-log modelling of glycolysis in Lactococcus lactis.
    del Rosario RC; Mendoza E; Voit EO
    IET Syst Biol; 2008 May; 2(3):136-49. PubMed ID: 18537454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer.
    Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2100-6. PubMed ID: 12450120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance.
    Neves AR; Ramos A; Costa H; van Swam II; Hugenholtz J; Kleerebezem M; de Vos W; Santos H
    Appl Environ Microbiol; 2002 Dec; 68(12):6332-42. PubMed ID: 12450858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture.
    Papagianni M; Avramidis N; Filiousis G
    Microb Cell Fact; 2007 May; 6():16. PubMed ID: 17521452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomics analysis of the Flp regulon in Lactococcus lactis subsp. cremoris.
    Akyol I
    Electrophoresis; 2013 Aug; 34(15):2218-28. PubMed ID: 23712609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative systems biology approach.
    Levering J; Musters MW; Bekker M; Bellomo D; Fiedler T; de Vos WM; Hugenholtz J; Kreikemeyer B; Kummer U; Teusink B
    FEBS J; 2012 Apr; 279(7):1274-90. PubMed ID: 22325620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering of self-sustaining systems: substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a Lactococcus lactis network in silico.
    Adamczyk M; Westerhoff HV
    Biotechnol J; 2012 Jul; 7(7):877-83. PubMed ID: 22700394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calculation of metabolic flow of xylose in Lactococcus lactis.
    Ohara H; Owaki M; Sonomoto K
    J Biosci Bioeng; 2007 Jan; 103(1):92-4. PubMed ID: 17298906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Glycolytic metabolites and adenosine triphosphoric acid in the herpes-infected eye].
    Terekhina NA; Petrovich IuA; Parkhomenko TG
    Zh Mikrobiol Epidemiol Immunobiol; 1998; (2):92-4. PubMed ID: 9662812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis.
    Mason PW; Carbone DP; Cushman RA; Waggoner AS
    J Biol Chem; 1981 Feb; 256(4):1861-6. PubMed ID: 6780554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glycolytic strategy as a tradeoff between energy yield and protein cost.
    Flamholz A; Noor E; Bar-Even A; Liebermeister W; Milo R
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):10039-44. PubMed ID: 23630264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding start-up problems in yeast glycolysis.
    Overal GB; Teusink B; Bruggeman FJ; Hulshof J; Planqué R
    Math Biosci; 2018 May; 299():117-126. PubMed ID: 29550298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteome constraints reveal targets for improving microbial fitness in nutrient-rich environments.
    Chen Y; van Pelt-KleinJan E; van Olst B; Douwenga S; Boeren S; Bachmann H; Molenaar D; Nielsen J; Teusink B
    Mol Syst Biol; 2021 Apr; 17(4):e10093. PubMed ID: 33821549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363.
    Solem C; Koebmann BJ; Jensen PR
    J Bacteriol; 2003 Mar; 185(5):1564-71. PubMed ID: 12591873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Glucose metabolism in Yersinia enterocolitica cells].
    Merinov SP; Mironova LP; Rudnik VS; Khamzina AM
    Zh Mikrobiol Epidemiol Immunobiol; 1980 Jul; (7):37-9. PubMed ID: 7435020
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aerobic growth thermograms of Streptococcus lactis obtained with a complex medium containing glucose.
    Monk PR
    J Bacteriol; 1978 Aug; 135(2):373-8. PubMed ID: 98515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increasing acidification of nonreplicating Lactococcus lactis deltathyA mutants by incorporating ATPase activity.
    Pedersen MB; Koebmann BJ; Jensen PR; Nilsson D
    Appl Environ Microbiol; 2002 Nov; 68(11):5249-57. PubMed ID: 12406711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.