These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26609790)

  • 21. Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions.
    Luo W; Wang J; Zhao X; Zhao Z; Li Z; Zou Z
    Phys Chem Chem Phys; 2013 Jan; 15(3):1006-13. PubMed ID: 23223365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants.
    Monfort O; Plesch G
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19362-19379. PubMed ID: 29860700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation.
    Li K; Xu Y; He Y; Yang C; Wang Y; Jia J
    Environ Sci Technol; 2013 Apr; 47(7):3490-7. PubMed ID: 23472666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Formation of a Disordered Layer on Monoclinic BiVO
    Kim JK; Cho Y; Jeong MJ; Levy-Wendt B; Shin D; Yi Y; Wang DH; Zheng X; Park JH
    ChemSusChem; 2018 Mar; 11(5):933-940. PubMed ID: 29274301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous BiVO
    Huang J; Meng A; Zhang Z; Ma G; Long Y; Li X; Han P; He B
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. WO
    Choi J; Sudhagar P; Kim JH; Kwon J; Kim J; Terashima C; Fujishima A; Song T; Paik U
    Phys Chem Chem Phys; 2017 Feb; 19(6):4648-4655. PubMed ID: 28124693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elucidating the effects of different photoanode materials on electricity generation and dye degradation in a sustainable hybrid system of photocatalytic fuel cell and peroxi-coagulation process.
    Nordin N; Ho LN; Ong SA; Ibrahim AH; Lee SL; Ong YP
    Chemosphere; 2019 Jan; 214():614-622. PubMed ID: 30292044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition.
    Jeong SY; Choi KS; Shin HM; Kim TL; Song J; Yoon S; Jang HW; Yoon MH; Jeon C; Lee J; Lee S
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):505-512. PubMed ID: 27966880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.
    Kim ES; Kang HJ; Magesh G; Kim JY; Jang JW; Lee JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17762-9. PubMed ID: 25232699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co
    Wang Y; Li F; Zhou X; Yu F; Du J; Bai L; Sun L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6911-6915. PubMed ID: 28474835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the Roles of NiO
    Zhang M; Antony RP; Chiam SY; Abdi FF; Wong LH
    ChemSusChem; 2019 May; 12(9):2022-2028. PubMed ID: 30246933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes.
    Choi SK; Choi W; Park H
    Phys Chem Chem Phys; 2013 May; 15(17):6499-507. PubMed ID: 23529529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale imaging of charge carrier transport in water splitting photoanodes.
    Eichhorn J; Kastl C; Cooper JK; Ziegler D; Schwartzberg AM; Sharp ID; Toma FM
    Nat Commun; 2018 Jul; 9(1):2597. PubMed ID: 30013111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.
    Zhao X; Zhu JY
    ChemSusChem; 2016 Jan; 9(2):197-207. PubMed ID: 26692572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Hydrogen and Electricity Production Combined with Degradation of Organics Based on a Novel Solar Water-Energy Nexus System.
    Chang S; Hu C; Beyhaqi A; Wang M; Zeng Q
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2505-2515. PubMed ID: 31850726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.
    Liu W; Mu W; Deng Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13558-62. PubMed ID: 25283435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tailoring the conduction band of titanium oxide by doping tungsten for efficient electron injection in a sensitized photoanode.
    Cant AM; Huang F; Zhang XL; Chen Y; Cheng YB; Amal R
    Nanoscale; 2014 Apr; 6(7):3875-80. PubMed ID: 24595270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode.
    Han L; Abdi FF; Perez Rodriguez P; Dam B; van de Krol R; Zeman M; Smets AH
    Phys Chem Chem Phys; 2014 Mar; 16(9):4220-9. PubMed ID: 24452785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell.
    Liu Y; Li J; Zhou B; Li X; Chen H; Chen Q; Wang Z; Li L; Wang J; Cai W
    Water Res; 2011 Jul; 45(13):3991-8. PubMed ID: 21620432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.