These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26609790)

  • 41. Direct electrical power generation from urine, wastes and biomass with simultaneous photodecomposition and cleaning.
    Kaneko M; Ueno H; Ohnuki K; Horikawa M; Saito R; Nemoto J
    Biosens Bioelectron; 2007 Aug; 23(1):140-3. PubMed ID: 17467260
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier.
    Liu W; Mu W; Liu M; Zhang X; Cai H; Deng Y
    Nat Commun; 2014; 5():3208. PubMed ID: 24504242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct Conversion of Wheat Straw into Electricity with a Biomass Flow Fuel Cell Mediated by Two Redox Ion Pairs.
    Gong J; Liu W; Du X; Liu C; Zhang Z; Sun F; Yang L; Xu D; Guo H; Deng Y
    ChemSusChem; 2017 Feb; 10(3):506-513. PubMed ID: 27976550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell.
    Lee SL; Ho LN; Ong SA; Wong YS; Voon CH; Khalik WF; Yusoff NA; Nordin N
    Chemosphere; 2017 Jan; 166():118-125. PubMed ID: 27693872
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.
    Li J; Li J; Chen Q; Bai J; Zhou B
    J Hazard Mater; 2013 Nov; 262():304-10. PubMed ID: 24051045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light.
    Ciriminna R; Delisi R; Parrino F; Palmisano L; Pagliaro M
    Chem Commun (Camb); 2017 Jul; 53(54):7521-7524. PubMed ID: 28631780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visible-light responsive photocatalytic fuel cell based on WO(3)/W photoanode and Cu(2)O/Cu photocathode for simultaneous wastewater treatment and electricity generation.
    Chen Q; Li J; Li X; Huang K; Zhou B; Cai W; Shangguan W
    Environ Sci Technol; 2012 Oct; 46(20):11451-8. PubMed ID: 22974181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A synergistic heterostructured ZnO/BaTiO
    Ong YP; Ho LN; Ong SA; Banjuraizah J; Ibrahim AH; Lee SL; Nordin N
    Chemosphere; 2019 Mar; 219():277-285. PubMed ID: 30543963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visible-light-enhanced electrocatalysis and bioelectrocatalysis coupled in a miniature glucose/air biofuel cell.
    Zhang L; Xu Z; Lou B; Han L; Zhang X; Dong S
    ChemSusChem; 2014 Sep; 7(9):2427-31. PubMed ID: 24961677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fuel-Free Bio-photoelectrochemical Cells Based on a Water/Oxygen Circulation System with a Ni:FeOOH/BiVO
    Zhang H; Yu Y; Zhang L; Dong S
    Angew Chem Int Ed Engl; 2018 Feb; 57(6):1547-1551. PubMed ID: 29276820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Porous FeOx/BiVO4-deltaS0.08: highly efficient photocatalysts for the degradation of methylene blue under visible-light illumination.
    Zhao Z; Dai H; Deng J; Liu Y; Wang Y; Li X; Bai G; Gao B; Au CT
    J Environ Sci (China); 2013 Oct; 25(10):2138-49. PubMed ID: 24494502
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Boosting power density of photocatalytic fuel cells with integrated supercapacitive photoanode.
    Jiang B; Bai J; Li L; He N; Zhang Q; Wang B; Tang D
    Chemosphere; 2022 Jan; 286(Pt 1):131657. PubMed ID: 34351279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO
    Xie S; Ouyang K
    J Colloid Interface Sci; 2017 Aug; 500():220-227. PubMed ID: 28411429
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solar-Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions.
    Choi DS; Kim J; Hollmann F; Park CB
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15886-15890. PubMed ID: 32495457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.
    Malati P; Mehrotra P; Minoofar P; Mackie DM; Sumner JJ; Ganguli R
    Bioresour Technol; 2015 Oct; 194():394-8. PubMed ID: 26208756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual Quantum Dot-Decorated Bismuth Vanadate Photoanodes for Highly Efficient Solar Water Oxidation.
    Luan P; Zhang X; Zhang Y; Li Z; Bach U; Zhang J
    ChemSusChem; 2019 Mar; 12(6):1240-1245. PubMed ID: 30684303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode.
    Fuku K; Sayama K
    Chem Commun (Camb); 2016 Apr; 52(31):5406-9. PubMed ID: 27009778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cooperative Catalytic Effect of ZrO
    Shaddad MN; Ghanem MA; Al-Mayouf AM; Gimenez S; Bisquert J; Herraiz-Cardona I
    ChemSusChem; 2016 Oct; 9(19):2779-2783. PubMed ID: 27585108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO
    Peng Y; Govindaraju GV; Lee DK; Choi KS; Andrew TL
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22449-22455. PubMed ID: 28636350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.