These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26609812)

  • 1. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA.
    Lässig C; Matheisl S; Sparrer KM; de Oliveira Mann CC; Moldt M; Patel JR; Goldeck M; Hartmann G; García-Sastre A; Hornung V; Conzelmann KK; Beckmann R; Hopfner KP
    Elife; 2015 Nov; 4():. PubMed ID: 26609812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified mechanisms for self-RNA recognition by RIG-I Singleton-Merten syndrome variants.
    Lässig C; Lammens K; Gorenflos López JL; Michalski S; Fettscher O; Hopfner KP
    Elife; 2018 Jul; 7():. PubMed ID: 30047865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.
    Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D
    BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing the role of ATP for the function of the RIG-I innate immune sensor.
    Rawling DC; Fitzgerald ME; Pyle AM
    Elife; 2015 Sep; 4():. PubMed ID: 26371557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization.
    Devarkar SC; Schweibenz B; Wang C; Marcotrigiano J; Patel SS
    Mol Cell; 2018 Oct; 72(2):355-368.e4. PubMed ID: 30270105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
    Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J
    Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA.
    Solotchi M; Patel SS
    Biochem Soc Trans; 2024 Jun; 52(3):1131-1148. PubMed ID: 38884803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent effector-like functions of RIG-I-like receptors.
    Yao H; Dittmann M; Peisley A; Hoffmann HH; Gilmore RH; Schmidt T; Schmidt-Burgk J; Hornung V; Rice CM; Hur S
    Mol Cell; 2015 May; 58(3):541-548. PubMed ID: 25891073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA.
    Anchisi S; Guerra J; Garcin D
    mBio; 2015 Mar; 6(2):e02349. PubMed ID: 25736886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.
    Myong S; Cui S; Cornish PV; Kirchhofer A; Gack MU; Jung JU; Hopfner KP; Ha T
    Science; 2009 Feb; 323(5917):1070-4. PubMed ID: 19119185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling.
    Civril F; Bennett M; Moldt M; Deimling T; Witte G; Schiesser S; Carell T; Hopfner KP
    EMBO Rep; 2011 Oct; 12(11):1127-34. PubMed ID: 21979817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting functions of ATP hydrolysis by MDA5 and LGP2 in viral RNA sensing.
    Singh R; Wu Y; Herrero Del Valle A; Leigh KE; Mong S; Cheng MTK; Ferguson BJ; Modis Y
    J Biol Chem; 2024 Mar; 300(3):105711. PubMed ID: 38309507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite actions of two dsRNA-binding proteins PACT and TRBP on RIG-I mediated signaling.
    Vaughn LS; Chukwurah E; Patel RC
    Biochem J; 2021 Feb; 478(3):493-510. PubMed ID: 33459340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into RNA recognition by RIG-I.
    Luo D; Ding SC; Vela A; Kohlway A; Lindenbach BD; Pyle AM
    Cell; 2011 Oct; 147(2):409-22. PubMed ID: 22000018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis.
    Yu Q; Qu K; Modis Y
    Mol Cell; 2018 Dec; 72(6):999-1012.e6. PubMed ID: 30449722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I.
    Luo D; Kohlway A; Vela A; Pyle AM
    Structure; 2012 Nov; 20(11):1983-8. PubMed ID: 23022350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon.
    Patel JR; Jain A; Chou YY; Baum A; Ha T; García-Sastre A
    EMBO Rep; 2013 Sep; 14(9):780-7. PubMed ID: 23846310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of length-dependent recognition of viral double-stranded RNA by RIG-I.
    Im JH; Duic I; Yoshimura SH; Onomoto K; Yoneyama M; Kato H; Fujita T
    Sci Rep; 2023 Apr; 13(1):6318. PubMed ID: 37072508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling blunt-end RNA binding and ATPase-driven translocation activities of the RIG-I family helicase LGP2.
    Lee KY; Craig C; Patel SS
    Nucleic Acids Res; 2024 Jan; 52(1):355-369. PubMed ID: 38015453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner.
    Peisley A; Wu B; Yao H; Walz T; Hur S
    Mol Cell; 2013 Sep; 51(5):573-83. PubMed ID: 23993742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.